Skip to main content

Green Revolution and Sustainable Development

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability in Higher Education

Abstract

This entry reviews the technological and scientific developments generated by the Green Revolution and how their intensive and extensive implementation have been decisive factors in the sustainability of the world’s production of crops for food, feed, fiber, and biofuels. It also discusses their impact on the landscape, water resources, environment, economy, culture, socioeconomic development, and the attitude and worldview of producers in developing countries towards agrochemicals, agricultural practices, and management and monoculture productivity. To date, the Green Revolution has focused on the global issue of sustainable development by concentrating exclusively on crop production; that is, by assessing only productivity per hectare or yields derived from technological breakthroughs, improved seeds, irrigation systems, and the suitability of the land to make it viable and sustainable to cultivate a given crop in a region. However, to achieve sustainable development it is necessary to incorporate aspects such as: organic agriculture, precision agriculture tools, life cycle analysis, soil and plant health, environmental impacts, water quality, post-harvest technology, by-product uses, and peasant and farmer perceptions of new paradigms such as globalization, value chains, competitiveness, bioeconomics, biorefineries, etc. Therefore, strategies for technical advice; training; skills development; transfer and adoption of technologies and knowledge; experiences and innovations with a multi-, trans-, and interdisciplinary approach; and the participation of higher education with all actors and decision-makers are essential to achieve the transition to an evergreen revolution and sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar-Rivera N, de Jesús Debernardi-Vázquez T (2018) Sustainable development for farmers transforming agroindustrial wastes into profitable green products. In: Sustainable Development Research and Practice in Mexico and selected Latin American Countries. Springer, Cham, pp 53–75

    Chapter  Google Scholar 

  • Aguilar-Rivera N, Castillo-Moran A, Enríquez-Ruvalcaba V, Herrera-Solano A, Milanés-Ramos N, Rodríguez-Lagunes DA (2017) Graduate education for sustainability of sugarcane biorefineries in Mexico. In: Sustainability practice and education on University campuses and beyond, pp 72–92

    Google Scholar 

  • Anonymous (2016) Soil fertility: agro-ecology and not the green revolution for Africa. African Centre for Biodiversity, Johannesburg, 23p

    Google Scholar 

  • Arias-Verdes JA, Rojas-Camponioni D, Dierkmeier-Corcuela G, Riera-Betancourt C, Cabrera-Cruz N (1990) Organochlorinated Pesticides Surveillance Series 9. Pan American Center for Human Ecology and Health, Pan American Health Organization, World Health Organization, México, 91p

    Google Scholar 

  • Bandara JMRS, Wijewardena HVP, Liyanege J, Upul MA, Bandara JMUA (2010) Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol Lett 198(1):33–39

    Article  CAS  Google Scholar 

  • Baranski MR (2015) Wide adaptation of Green Revolution wheat: International roots and the Indian context of a new plant breeding ideal, 1960–1970. Stud Hist Philos Sci Part C 50:41–50

    Article  Google Scholar 

  • Batie SS (1989) Sustainable development: challenges to the profession of agricultural economics. Am J Agric Econ 71(5):1083–1101

    Article  Google Scholar 

  • Borges CD, Carvalho JLN, Kölln OT, Sanches GM, Silva MJ, Castro SG, … Vargas VP (2019) Can alternative N-fertilization methods influence GHG emissions and biomass production in sugarcane fields? Biomass Bioenergy 120:21–27

    Article  CAS  Google Scholar 

  • Bradstreet RB (1965) The Kjeldahl method for organic nitrogen. Academic, London/New York

    Google Scholar 

  • Brainerd E, Menon N (2014) Seasonal effects of water quality: the hidden costs of the Green Revolution to infant and child health in India. J Dev Econ 107:49–64

    Article  Google Scholar 

  • Briggs SA, Rachel Carson Council (1992) Basic guide to pesticides. Their characteristics and hazards. Taylor & Francis Publishers, Washington, DC. 283 pp

    Google Scholar 

  • Cardoso TF, Watanabe MD, Souza A, Chagas MF, Cavalett O, Morais ER, … Bonomi A (2018) Economic, environmental, and social impacts of different sugarcane production systems. Biofuels Bioprod Biorefin 12(1):68–82

    Article  Google Scholar 

  • Carvalho JLN, Nogueirol RC, Menandro LMS, Bordonal RDO, Borges CD, Cantarella H, Franco HCJ (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9(7):1181–1195

    Article  CAS  Google Scholar 

  • Cassman KG, Grassini P (2013) Can there be a green revolution in Sub-Saharan Africa without large expansion of irrigated crop production? Glob Food Sec 2(3):203–209

    Article  Google Scholar 

  • Dawson N, Martin A, Sikor T (2016) Green revolution in sub-Saharan Africa: implications of imposed innovation for the wellbeing of rural smallholders. World Dev 78:204–218

    Article  Google Scholar 

  • Evenson R (1974) The “green revolution” in recent development experience. Am J Agric Econ 56(2):387–394

    Article  Google Scholar 

  • FAO (2011) The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW). Managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London. http://www.fao.org/3/i1688e/i1688e00.htm

  • FAO (2017) FAOSTAT. Available in: http://www.fao.org/faostat/en/#data. Accessed 21 Nov 2017

  • Flores-Jiménez DE, Algara-Siller M, Aguilar-Rivera N, Carbajal N, Aldama-Aguilera C, Ávila-Galarza A, Álvarez-Fuentes G (2016) Influence of sugarcane burning on soil carbon and nitrogen release under drought and evapotranspiration conditions in a Mexican sugarcane supply zone. Revista Internacional de Contaminación Ambiental 32(2):177–189

    Article  Google Scholar 

  • Frankema E (2014) Africa and the green revolution a global historical perspective. NJAS-Wageningen J Life Sci 70:17–24

    Article  Google Scholar 

  • Frey M, Sabbatino A (2018) The role of the private sector in global sustainable development: the UN 2030 Agenda. In: Corporate responsibility and digital communities. Palgrave Macmillan, Cham, pp 187–204

    Chapter  Google Scholar 

  • Gómez Juárez IA, Sánchez Ferrer ME (2010) Containers system, an option to reduce strange matter in the sugarcane mechanized elk. Revista Ciencias Técnicas Agropecuarias 19(1):63–69

    Google Scholar 

  • Hardin LS (2008) Meetings that changed the world: Bellagio 1969: the green revolution. Nature 455(7212):470–471

    Article  CAS  Google Scholar 

  • Headey DD, Hoddinott J (2016) Agriculture, nutrition and the green revolution in Bangladesh. Agric Syst 149:122–131

    Article  Google Scholar 

  • Henao S, Finkelman J, Koning HW (1993) Pesticides and health in the Americas. Organización Panamericana de la Salud (OPS), Washington, DC. 110p

    Google Scholar 

  • Herrera-Solano A, Milanés-Ramos N, Ordóñez-Barahona P, Castillo-Morán A, Enríquez-Ruvalcaba V, Heredia-Espejo C (2011) Raw material cleaner at Ingenio San Miguelito containers with the use of the crop of sugar cane (Saccharum spp.). Cultivos Tropicales 32:49–53

    Google Scholar 

  • König A (2015) Changing requisites to universities in the 21st century: organizing for transformative sustainability science for systemic change. Curr Opin Environ Sustain 16:105–111

    Article  Google Scholar 

  • Kumar MR (2009) Norman Borlaug and Green Revolution. Conference paper. Agric Today 55–57

    Google Scholar 

  • Kuyper TW, Struik PC (2014) Epilogue: global food security, rhetoric, and the sustainable intensification debate. Curr Opin Environ Sustain 8:71–79

    Article  Google Scholar 

  • Lampman W (1995) Susceptibility of groundwater to pesticide and nitrate contamination in predisposed areas of southwestern Ontario. Water Qual Res Jour Canada 30:443–468

    Article  CAS  Google Scholar 

  • Melillo ED (2012) The First Green Revolution: Debt Peonage and the Making of the Nitrogen Fertilizer Trade, 1840–1930. Am Hist Rev 117(4):1028–1060

    Article  Google Scholar 

  • Mugica-Álvarez V, Hernández-Rosas F, Magaña-Reyes M, Herrera-Murillo J, Santiago-De La Rosa N, Gutiérrez-Arzaluz M, … González-Cardoso G (2018) Sugarcane burning emissions: Characterization and emission factors. Atmos Environ 193:262–272

    Article  Google Scholar 

  • Nin-Pratt A, McBride L (2014) Agricultural intensification in Ghana: Evaluating the optimist’s case for a Green Revolution. Food Policy 48:153–167

    Article  Google Scholar 

  • Norma Oficial Mexicana NOM-021-RECNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis

    Google Scholar 

  • Oka IN (1991) Success and challenges of the Indonesian national integrated pest management program in the rice-based cropping system. Crop Prot 10:163–165

    Article  Google Scholar 

  • Olmstead AL, Rhode PW (2008) Creating abundance: biological innovation and American Agricultural Development. Cambridge University Press, New York. 480p

    Google Scholar 

  • Orta-Arrazcaeta L (2002) Water contamination by chemical pesticides. Fitosanidad 6(3):55–62

    Google Scholar 

  • Patel R (2013) The long green revolution. J Peasant Stud 40(1):1–63

    Article  Google Scholar 

  • Pimentel D (1996) Green revolution agriculture and chemical hazards. Sci Total Environ 188:S86–S98

    Article  CAS  Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, … D’amore M (1992) Environmental and economic costs of pesticide use. Bioscience 42(10):750–760

    Article  Google Scholar 

  • Pretty J (2018) Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability 1:441–446

    Article  Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596

    Article  Google Scholar 

  • Ramírez JA, Lacasaña M (2001) Pesticides: classification, use, toxicological aspects and exposure assessment. Arch Prev Riesgos Labor 4(2):67–75

    Google Scholar 

  • Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, … de Fraiture C (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46(1):4–17

    Article  Google Scholar 

  • Sebby K (2010) The green revolution of the 1960’s and its impact on small farmers in India. Undergraduate Thesis. Faculty of Environmental Studies. University of Nebraska-Lincoln, Lincoln. 32p. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1027&context=envstudtheses

    Google Scholar 

  • SIAP (2018) Cifras finales de la producción de caña y azúcar en los ingenios azucareros de México, zafra 2016/17. https://conadesuca.maps.arcgis.com/apps/webappviewer/index.html?id=45a9af005e7e4375817f10696e574c7f.

  • Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products–An overview. Renew Energy 98:203–215

    Article  CAS  Google Scholar 

  • Singh B (1993) Pesticide residues in the environment: a case study of Punjab. In: Sengupta S (ed) Green revolution impact on health and environment, pp 21–28

    Google Scholar 

  • Singh RB (2000) Environmental consequences of agricultural development: a case study from the Green Revolution state of Haryana, India. Agric Ecosyst Environ 82(1):97–103

    Article  Google Scholar 

  • Sonnenfeld DA (1992) Mexico’s “Green Revolution,” 1940–1980: towards an environmental history. Environ Hist Rev 16(4):29–52

    Google Scholar 

  • Struik PC, Kuyper TW (2017) Sustainable intensification in agriculture: the richer shade of green. A review. Agron Sustain Dev 37(5):39

    Article  Google Scholar 

  • Van Pham L, Smith C (2014) Drivers of agricultural sustainability in developing countries: a review. Environ Syst Decis 34(2):326–341

    Article  Google Scholar 

  • Vieira FR, de Andrade MCN (2016) Optimization of substrate preparation for oyster mushroom (Pleurotus ostreatus) cultivation by studying different raw materials and substrate preparation conditions (composting: phases I and II). World J Microbiol Biotechnol 32(11):190

    Article  Google Scholar 

  • Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL (2005) Fungal bioconversion of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2, 4-dichlorophenol (2, 4-DCP). Chemosphere 60(10):1471–1480

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Aguilar-Rivera .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aguilar-Rivera, N., Michel-Cuello, C., Cárdenas-González, J.F. (2019). Green Revolution and Sustainable Development. In: Leal Filho, W. (eds) Encyclopedia of Sustainability in Higher Education. Springer, Cham. https://doi.org/10.1007/978-3-319-63951-2_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63951-2_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63951-2

  • Online ISBN: 978-3-319-63951-2

  • eBook Packages: Springer Reference EducationReference Module Humanities and Social SciencesReference Module Education

Publish with us

Policies and ethics