Skip to main content

Simulation of Abrasive Wear with a Coupled Approach Considering Particles of Different Sizes

  • Conference paper
  • First Online:
Recent Trends in Applied Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 199))

  • 708 Accesses

Abstract

Abrasive wear is a damage caused by small solid particles which are transported by the working fluid of a hydraulic machine. In case of an impact of an abrasive particle, material of the boundary surface is removed or deformed. Several material parameters have an influence on the amount of the removed material. In complex industrial applications, like the impact of a free jet with particle loading on a pelton bucket of a turbine in a water power plant, the abrasive particles, i.e. the loading of the fluid, often consist of geomaterials. In this paper a new approach is presented for accurately modelling abrasive wear due to a loading consisting of particles of geomaterials with different sizes. The fluid is modelled with the Smoothed Particle Hydrodynamics method. This method is a complete meshless method which is very suitable for highly transient flows with free surfaces. The loading is described with two different methods depending on the size of the particle. Smaller particles are modelled with a transport equation and larger ones with the Discrete Element Method. In this study the resulting wear patterns, due to the impact of a free jet with loading consisting of particles with different diameters, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, F., Eberhard, P.: Predicting abrasive wear with coupled Lagrangian methods. Comput. Part. Mech. 2(1), 51–62 (2015)

    Article  Google Scholar 

  2. Beck, F., Eberhard, P.: Study on abrasive wear with a Lagrangian SPH approach. In: Proceedings of the 11th International Smoothed Particle Hydrodynamics European Research Interest Community SPH Workshop (SPHERIC 2016), pp. 39–46 (2016)

    Google Scholar 

  3. Bitter, J.: A study of erosion phenomena: part I. Wear 6(1), 5–21 (1963)

    Article  Google Scholar 

  4. Bitter, J.: A study of erosion phenomena: part II. Wear 6(3), 169–190 (1963)

    Article  Google Scholar 

  5. Campbell, J., Vignejevic, R., Libersky, L.: A contact algorithm for smoothed particle hydrodynamics. Comput. Meth. Appl. Mech. Eng. 184, 49–65 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  ADS  MATH  Google Scholar 

  7. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  9. DIN EN ISO 14688-1: Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden Teil 1: Benennung und Beschreibung. Deutsches Institut für Normung, pp. 1–20 (2011)

    Google Scholar 

  10. Duan, C., Karelin, V.: Abrasive Erosion Corrosion of Hydraulic Machinery. Imperial College Press, London, Series on Hydraulic Machinery (2002)

    Google Scholar 

  11. Ergenzinger, C., Seifried, R., Eberhard, P.: A discrete element model to describe failure of strong rock in uniaxial compression. Granular Matter 13(4), 341–364 (2011)

    Article  Google Scholar 

  12. Ergenzinger, C., Seifried, R., Eberhard, P.: A discrete element approach to model breakable railway ballast. J. Comput. Nonlinear Dyn. 7(4), 041010–1–8 (2012)

    Google Scholar 

  13. Forder, A., Thew, M., Harrison, D.: A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear 216(2), 184–193 (1998)

    Article  Google Scholar 

  14. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  ADS  MATH  Google Scholar 

  15. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Google Scholar 

  16. Guilcher, P.M., Ducrozet, G., Alessandrini, B., Ferrant, P.: Water wave propagation using SPH models. In: Proceedings 2nd International Spheric Workshop, pp. 119–122 (2007)

    Google Scholar 

  17. Hashish, M.: An improved model of erosion by solid particle impact. In: Proceedings of the 7th International Conference on Erosion by Liquid and Solid Impact, pp. 66.1–66.9 (1987)

    Google Scholar 

  18. Hu, X., Adams, N.: A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 844–861 (2005)

    Google Scholar 

  19. Kos’Yan, R., Divinskiy, B., Krylenko, M., Vincent, C.: Modelling of the Vertical Distribution of Suspended Sediment Concentration Under Waves with a Group Structure. Oceans 2007—Europe, pp. 1–6 (2007)

    Google Scholar 

  20. Kristof, P., Benes, B., Krivanek, J., Stava, O.: Hydraulic erosion using smoothed particle hydrodynamics. Comput. Grap. Forum Proc. Eurographics 28(2), 219–228 (2009)

    Article  Google Scholar 

  21. Kulasegaram, S., Bonet, J., Lewis, R.W., Profit, M.: A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput. Mech. 33, 316–325 (2004)

    Article  MATH  Google Scholar 

  22. Liu, M., Liu, G.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Meth. Eng. 17, 25–76 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, X., Xu, H., Shao, S., Lin, P.: An improved incompressible SPH model for simulation of wave structure interaction. Comput. Fluids 71, 113–123 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013–1024 (1977)

    Article  ADS  Google Scholar 

  25. Lyczkowski, R.W., Bouillard, J.X.: State-of-the-art review of erosion modeling in fluid/solids systems. Prog. Ener. Combust. Sci. 28(6), 543–602 (2002)

    Article  Google Scholar 

  26. Meng, H., Ludema, K.: Wear Models and Predictive Equations: Their Form and Content. Wear 181–183, Part 2, 443–457 (1995)

    Google Scholar 

  27. Monaghan, J.J., Kocharyan, A.: SPH simulation of multi-flow. Comput. Phys. Commun. 87, 225–235 (1995)

    Article  ADS  MATH  Google Scholar 

  28. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  ADS  MATH  Google Scholar 

  29. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Google Scholar 

  31. Nasato, D.S., Goniva, C., Pirker, S., Kloss, C.: Coarse graining for large-scale DEM simulations of particle flow–an investigation on contact and cohesion models. Proc. Eng. 102, 1484–1490 (2015)

    Article  Google Scholar 

  32. Padhy, M., Saini, R.: Effect of size and concentration of silt particles on erosion of pelton turbine buckets. Energy 34(10), 1477–1483 (2009)

    Article  Google Scholar 

  33. Potapov, A.V., Hunt, M.L., Campbell, C.S.: Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technol. 116(2–3), 204–213 (2001)

    Article  Google Scholar 

  34. Rafiee, A., Cummins, S., Rudman, M., Thiagarajan, K.: Comparative study on the accuracy and stability of sph schemes in simulating energetic free-surface flows. Eur. J. Mech. - B/Fluids 36, 1–16 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Robinson, M., Ramaioli, M., Luding, S.: Fluid particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. Int. J. Multiph. Flow 59, 121–134 (2014)

    Article  Google Scholar 

  36. Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  37. Shan, Z.: Coastel Sediment Transport Simulation by Smoothed Particle Hydrodynamics. PhD thesis, The Johns Hopkins University, (2007)

    Google Scholar 

  38. Takeda, H., Miyama, S., Sekiya, M.: Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92(5), 939–960 (1994)

    Article  ADS  Google Scholar 

  39. Wang, Y., Yang, Z.: A coupled finite element and meshfree analysis of erosive wear. Tribol. Int. 42(2), 373–377 (2009)

    Article  Google Scholar 

  40. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wood, R., Jones, T., Ganeshalingam, J., Miles, N.: Comparison of predicted and experimental erosion estimates in slurry ducts. Wear 256(9–10), 937–947 (2004)

    Article  Google Scholar 

  42. Wood, R., Jones, T., Miles, N., Ganeshalingam, J.: Upstream swirl-induction for reduction of erosion damage from slurries in pipeline bends. Wear 250, 770–778 (2001)

    Article  Google Scholar 

  43. Wu, W., Wang, S.S.Y.: Formulas for sediment porosity and settling velocity. J. Hydraul. Eng. 8(132), 858–862 (2006)

    Article  Google Scholar 

  44. Violeau, D., Issa, R.: Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int. J. Numer. Methods Eng. 53, 277–304 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Vila, J.P.: On particle weighted methods and smooth particle hydrodynamics. Math. Models Methods Appl. Sci. 9(2), 161–209 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Xu, R., Stansby, P.K., Laurence, D.R.: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 18(228), 6703–6725 (2009)

    Google Scholar 

Download references

Acknowledgements

This research has been partially made possible by funding from the German Research Foundation (DFG) under the program SFB 716 ‘Dynamic simulation of systems with large particle numbers’, subproject A5 with the title ‘Simulation of abrasive damage processes using hybrid smoothed particle hydrodynamics’. This financial support is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Eberhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beck, F., Eberhard, P. (2018). Simulation of Abrasive Wear with a Coupled Approach Considering Particles of Different Sizes. In: Belhaq, M. (eds) Recent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-63937-6_2

Download citation

Publish with us

Policies and ethics