Skip to main content

Germplasm Characterization and Trait Discovery in Peanut

  • Chapter
  • First Online:
The Peanut Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Peanut (Arachis hypogaea L.) is an important oilseed and cash crop worldwide. The peanut germplasm is fundamental to genetic enhancement for improved cultivars. A lot of germplasm accessions of the cultivated peanut and wild Arachis species have been assembled and conserved in many countries, with ICRISAT, USDA, and OCRI-CAAS being the major conserving agencies. Besides a lot of peanut germplasm characterization work conducted by various scientists in the world, remarked progress has been achieved in the past two decades in assessing the genetic diversity within A. hypogaea after the peanut core and mini core collections were selected in the USA, ICRISAT, and China. With extensive and intensive germplasm characterization, elite peanut accessions with desirable traits have been identified for further breeding and other research purposes. Research priorities of trait discovery and genetic enhancement have been given to yield-related characters, resistance to late leaf spot, early leaf spot, rust, tomato spotted wilt virus, groundnut rosette virus, bacterial wilt, nematodes and aflatoxin contamination, tolerance to drought, and quality-related characters such as oil content, protein content, and fatty acid components. With the development of genomic tools, molecular approaches have been widely applied in peanut germplasm characterization and trait discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson WF, Holbrook CC, Culbreath AK (1996) Screening the peanut core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61

    Article  Google Scholar 

  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Nageswara Rao RC, Wright GC, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194:113–125

    Article  CAS  Google Scholar 

  • Arunyanark A, Jogloy S, Wongkaew S, Akkasaeng C, Vorasoot N, Wright GC, Nageswara Rao RC, Patanothai A (2009) Association between aflatoxin contamination and drought tolerance traits in peanut. Field Crops Res 114:14–22

    Article  Google Scholar 

  • Barkley NA, Dean RE, Pittman RN, Wang ML, Holbrook CC, Pederson GA (2007) Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genet Res 89:93–106

    Article  CAS  PubMed  Google Scholar 

  • Barkley NA, Chamberlin Chenault KD, Wang ML, Pittman RN (2010) Development of real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed 25:541–548

    Article  CAS  Google Scholar 

  • Barkley NA, Wang ML, Pittman RN (2011) A real-time PCR genotyping assay to detect FAD2A SNPs in peanuts (Arachis hypogaea L.). Electron J Biotech. doi:10.2225/vol14-issue1-fulltext-12

    Google Scholar 

  • Barkley NA, Upadhyaya HD, Liao B, Holbrook CC (2016) Global resources of genetic diversity in peanut. In: Stalker HT, Wilson RF (eds) Peanuts: genetics, processing, and utilization. academic press and AOCS press, pp 67–109. ISBN: 9781630670382

    Google Scholar 

  • Chen CY, Barkley NA, Wang ML, Holbrook CC, Dang PM (2013) Registration of purified accessions for the U.S. peanut mini-core germplasm collection. J Plant Regist 8:77–85

    Article  Google Scholar 

  • Chenault Chamberlin KD, Melouk HA, Payton ME (2010) Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to Sclerotinia minor jagger. Euphytica 172:109–115

    Article  Google Scholar 

  • Culbreath AK, Todd JW, Demski JW, Chamberlin JR (1992) Disease progress of spotted wilt in peanut cultivars florunner and southern runner. Phytopathology 82:766–771

    Article  Google Scholar 

  • Damicone JP, Holbrook CC, Smith DL, Melouk HA, Chenault KD (2010) Reaction of the core collection of peanut germplasm to sclerotinia blight and pepper spot. Peanut Sci 37:1–11

    Article  Google Scholar 

  • Dean LL, Hendrix KW, Holbrook CC, Sanders TH (2009) Content of some nutrients in the core of the peanut germplasm collection. Peanut Sci 36:104–120

    Article  Google Scholar 

  • Dwivedi SL, Puppala N, Upadhyaya HD, Manivannan N, Singh S (2008) Developing a core collection of peanut specific to Valencia market type. Crop Sci 48:625–632

    Article  Google Scholar 

  • FAO (2015) FAO web. http://www.fao.org/

  • Franke MD, Brenneman TB, Holbrook CC (1999) Identification of resistance to rhizoctonia limb rot in a core collection of peanut germplasm. Plant Dis 83:944–948

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber WK, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic Manipulation: impact on man and society. Cambridge University Press, Cambridge, UK, pp 161–170

    Google Scholar 

  • Girdthai T, Jogloy S, Vorasoot N, Akkasaeng C, Wongkaew S, Holbrook CC, Patanothai A (2010) Associations between physiological traits for drought tolerance and aflatoxin contamination in peanut genotypes under terminal drought. Plant Breed 129:693–699

    Article  CAS  Google Scholar 

  • Hamidou F, Ratnakumar P, Halilou O, Mponda O, Kapewa T, Monyo E, Faye I, Ntare BR, Nigam SN, Upadhyaya HD, Vadez V (2012) Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crops Res 126:189–199

    Article  Google Scholar 

  • Hamidou F, Rathore A, Waliyar F, Vadez V (2014) Although drought intensity increases aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination. Field Crops Res 156:103–110

    Article  Google Scholar 

  • Hammons RO (1994) The origin and history of the groundnut. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 24–42

    Chapter  Google Scholar 

  • Hammond EG, Duvick D, Wang T, Dodo H, Pittman RN (1997) Survey of fatty acid composition of peanut (Arachis hypogaea) germplasm and characterization of their epoxy and eicosenoic acids. J Am Chem Soc 74:1235–1239

    CAS  Google Scholar 

  • Harlan JR (1972) Genetic resources in sorghum. In: Rao NGP, House LR (eds) Sorghum in the seventies. Oxford & IBH Publishing Co., New Delhi, pp 1–13

    Google Scholar 

  • Hebbar KB, Sashidhar VR, Udayakumar M, Devendra R, Nageswara Rao RC (1994) A comparative assessment of water use efficiency in groundnut (Arachis hypogaea) grown in containers and in the field under water-limited conditions. J Agri Sci 122:429–434

    Article  Google Scholar 

  • Holbrook CC, Anderson WF (1993) Minimum descriptor information on a core collection of peanut. Agron Abstr 189

    Google Scholar 

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci 33:859–861

    Article  Google Scholar 

  • Holbrook CC, Anderson WF (1995) Evaluation of a core collection to identify resistance to late leafspot in peanut. Crop Sci 35:1700–1702

    Article  Google Scholar 

  • Holbrook CC, Stephenson MG, Johnson AW (2000a) Level and geographical distribution of resistance to Meloidogyne arenaria in the U.S. peanut germplasm collection. Crop Sci 40:1168–1171

    Article  Google Scholar 

  • Holbrook CC, Timper P, Xue HQ (2000b) Evaluation of the core collection approach for identifying resistance to Meloidogyne arenaria in peanut. Crop Sci 40:1172–1175

    Article  Google Scholar 

  • Holbrook CC, Dong W (2005) Development and evaluation of a mini-core collection for the U.S. peanut germplasm collection. Crop Sci 45:1540–1544

    Article  Google Scholar 

  • Holbrook CC, Timper P, Culbreath AK, Kvein CK (2008) Registration of ‘Tifguard’ peanut. J Plant Regist 2:92–94

    Article  Google Scholar 

  • Holbrook CC, Guo BZ, Wilson DM, Timper P (2009) The U.S. breeding program to develop peanut with drought tolerance and reduced aflatoxin contamination. Peanut Sci 36:50–53

    Article  Google Scholar 

  • Huang L, Jiang H, Ren X, Chen Y, Xiao Y, Zhao X, Tang M, Huang J, Upadhyaya HD, Liao B (2012) Abundant microsatellite diversity and oil content in wild Arachis species. PLoS One 7:e50002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IBPGR, ICRISAT (1992) Descriptors for Groundnut. International Board of Plant Genetic Resources. Rome, Italy. ICRAST, Patancheru, AP, India

    Google Scholar 

  • Isleib TG, Beute MK, Rice PW, Hollowell JE (1995) Screening of the peanut core collection for resistance to cylindrocladium black rot and early leaf spot. Proc Am Peanut Res Educ Soc 27:25

    Google Scholar 

  • Isleib TG, Holbrook CC, Gorbet DW (2001) Use of plant introductions in peanut cultivar development. Peanut Sci 28:96–113

    Article  Google Scholar 

  • Jiang H, Ren XP (2006) Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chin J Oil Crop Sci 28:421–426

    CAS  Google Scholar 

  • Jiang HF, Duan NX (2006) Descriptors and Data Standard for Peanut (Arachis spp.). China Agricultural Press, Beijing. ISBN: 7-109-10911-9 (in Chinese)

    Google Scholar 

  • Jiang HF, Ren XP, Huang JQ, Liao BS, Lei Y (2008a) Establishment of a peanut mini core collection in China and exploration of new resource with high oleate. Chin J Oil Crop Sci 30:294–299

    Google Scholar 

  • Jiang HF, Ren XP, Liao BS, Huang JQ, Lei Y, Chen BY, Guo BZ, Holbrook CC, Upadhyaya HD (2008b) Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin 34:25–30

    CAS  Google Scholar 

  • Jiang HF, Ren XP, Wang SY, Zhang XJ, Huang JQ, Liao BS, Holbrook CC, Upadhyaya HD (2010) Development and evaluation of peanut germplasm with resistance to Aspergillus flavus from core collection. Acta Agron Sin 36:428–434

    Google Scholar 

  • Jiang HF, Ren XP, Chen YN, Huang L, Zhou XJ, Huang JQ, Froenicke L, Yu JJ, Guo BZ, Liao BS (2013) Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet Resour 11:77–83

    Article  Google Scholar 

  • Jiang HF, Huang L, Ren XP, Chen YN, Zhou XJ, Xia YL, Huang JQ, Lei Y, Yan LY, Wan LY, Liao BS (2014) Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol 56:159–169

    Article  PubMed  Google Scholar 

  • Jianwei L, Huifang J, Xiaoping R, Xiaojie Z, Boshou L (2010) Identification and molecular traits of ICRISAT mini core collection of peanut species with resistance to bacterial wilt. Chin Agric Sci Bull 26:47–51

    Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  PubMed  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Romero Lopes C, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of the allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Kottapalli KR, Burow MD, Burow G, Burke J, Puppala N (2007) Molecular characterization of the U.S. peanut mini core collection using microsatellite markers. Crop Sci 47:1718–1727

    Article  CAS  Google Scholar 

  • Krapovickas A (1969) The origin, variability and spread of the groundnut (Arachis hypogaea) (English translation). In: Ucko PJ, Falk IS (eds) The domestication and exploitation of plants and animals. Gerald Duckworth Co Ltd, London, pp 424–441

    Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomia del Genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol 9:261–265

    Article  Google Scholar 

  • Liao BS (2014) Peanut Breeding. In: Nalini M, Varshney RK (eds) Genetic, genomics and breeding of peanuts. CRC Press Taylor and Francis Group, Boca Raton, London, New York, pp 61–78

    Google Scholar 

  • Liao BS, Lei Y, Wang SY, Li D, Huang JQ, Jiang HF, Ren XP (2008) Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin 34:999–1004

    Article  CAS  Google Scholar 

  • Liao BS, Lei Y, Li D, Wang SY, Huang JQ, Ren XP, Jiang HF, Yan LY (2010) Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt developed from recombinant inbred lines. Acta Agron Sin 36:1296–1301

    CAS  Google Scholar 

  • Mallikarjuna N (2002) Gene introgression from Arachis glabrata into A. hypogaea, A. duranensis and A. diogoi. Euphytica 124:99–105

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Jadhav DR, Reddy D, Husain F, Das K (2012) Screening new Arachis amphidiploids, and autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol 132(1):17–21

    Article  Google Scholar 

  • Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hyber variable regions of the genome. BMC Plant Biol 4:1–10

    Article  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ (2012) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Nageswara Rao RC, Wright GC, Cruickshank AL (2000) Genetic enhancement of drought resistance in Australian peanuts. Proceedings American Peanut Research and Education Society 32: 71 (abstr)

    Google Scholar 

  • Nigam SN, Chandra S, Rupa Sridevi K, Bhukta M, Reddy AGS, Rahaputi NR, Wright GC, Reddy PV, Deshmukh MP, Mathur RK, Basu MS, Vasundhara S, Vindhiyavarman P, Nagda AK (2005) Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut. Ann Appl Biol 146:433–439

    Google Scholar 

  • Nigam SN, Waliyar F, Aruna R, Reddy SV, Lava Kumar P, Craufurd PQ, Diallo AT, Ntare BR, Upadhyaya HD (2009) Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49

    Article  Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14:7–11

    Article  CAS  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimaraes P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pittman RN (1995) United States Peanut Descriptors. USDA-ARS-132. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Reddy TY, Reddy VR, Anbumozhi V (2003) Physiological responses of groundnut (Arachis hypogaea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul 41:75–88

    Article  CAS  Google Scholar 

  • Seijo G, Lavia GI, Fernandez A, Krapovickas A, Ducasse DA, Bertioli DJ, Moscone EA (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Simpson CE, Nelson SC, Starr J, Woodward KE, Smith OD (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm lines. Crop Sci 33:1418

    Google Scholar 

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial wilt diseases: an update and appraisal. Information Bulletin No. 50. ICRISAT, Patancheru, AP, India, p 48

    Google Scholar 

  • Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN, Sastri DC (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43:440–441

    Article  Google Scholar 

  • Stalker HT, Simpson CE (1995) Germplasm resources in Arachis. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, OK, pp 14–53

    Google Scholar 

  • Stalker HT (1997) Peanut (Arachis hypogaea L.). Field Crops Res 53:205–217

    Article  Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker assisted selection. Peanut Sci 28:117–123

    Article  CAS  Google Scholar 

  • Stalker HT, Tallury SP, Ozias-Akins P, Bertioli D, Bertioli SCL (2013) The value of diploid peanut relatives for breeding and genomics. Peanut Sci 40:70–88

    Article  Google Scholar 

  • Subrahmanyam P, McDonald D, Waliar F, Reddy LJ, Nigam SN, Gibbons RW, Rao VR, Singh AK, Pande S, Reddy PM, Rao PVS (1995) Screening methods and sources of resistance to rust and late leaf spot of groundnut. Information Bulletin No. 47. ICRISAT, Pattancheru, AP, India, p 20

    Google Scholar 

  • Subrahmanyam P, Naidu RA, Reddy LJ, Kumar PL, Ferguson ME (2001) Resistance to groundnut rosette disease in wild Arachis species. Ann Appl Biol 139:45–50

    Article  Google Scholar 

  • Sun DR (1998) Breeding of Groundnut. China Agricultural Press, Beijing (in Chinese). ISBN: 7-109-05154-4/S.3261

    Google Scholar 

  • Upadhyaya HD, Ferguson ME, Bramel PJ (2001a) Status of Arachis germplasm collection at ICRISAT. Peanut Sci 28:89–96

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2001b) Development of Asia region groundnut core collection. In: Diamond jubilee symposium on hundred years of post-mendelian genetics-retrospect and prospects. Indian Agricultural Research Institute, New Delhi, India, 6–9 November 2001

    Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Upadhyaya HD (2003) Phenotypic diversity in groundnut (Arachis hypogaea L.) core collection assessed by morphological and agronomical evaluations. Genet Res Crop Evol 50:539–550

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Res Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD (2005) Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440

    Article  Google Scholar 

  • Upadhyaya HD, Reddy LJ, Gowda CLL, Singh S (2006) Identification of diverse groundnut germplasm: sources of early-maturity in a core collection. Field Crops Res 97:261–271

    Article  Google Scholar 

  • Upadhyaya HD, Bhattacharjee R, Hoisington DA, Chandra S, Varshney RK, Valls JFM, Moretzsohn MC, Leal-Bertioli S, Guimaraes P, Bertioli D (2008) Molecular characterization of groundnut (Arachis hypogea L.) composite collection. In: Project Abstracts, GCP Annual Meeting, pp 51–52. Bangkok, Thailand, 16–20 September 2008

    Google Scholar 

  • Upadhyaya HD, Mukri G, Nadaf HL, Singh S (2012) Variability and stability analysis for nutritional traits in the mini core collection of peanut. Crop Sci 52:168–178

    Article  Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL (2014) Genetic resources, diversity and association mapping in peanut. In: Nalini M, Varshney RK (eds) Genetic, genomics and breeding of peanuts. CRC Press Taylor and Francis Group, Boca Raton, London, New York

    Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63

    Google Scholar 

  • Waliyar F, Vijay Krishna Kumar K, Diallo M, Traore A, Mangala UN, Upadhyaya HD, Sudini H (2016) Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol 145(4):901–913

    Google Scholar 

  • Wang ML, Sukumaran S, Barkley NA, Chen Z, Chen CY, Guo B, Pittman RN, Stalker HT, Holbrook CC, Pederson GA, Yu J (2011) Population structure and marker-trait association analysis of the U.S. peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123:1307–1317

    Article  PubMed  Google Scholar 

  • Wang ML, Chen CY, Tonnis B, Barkley NA, Pinnow DL, Pittman RN, Davis J, Holbrook CC, Stalker HT, Pederson GA (2013) Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. J Agric Food Chem 61:2875–2882

    Article  CAS  PubMed  Google Scholar 

  • Wang HM, Lei Y, Wan LY, Yan LY, Lv JW, Dai XF, Ren XP, Guo W, Jiang HF, Liao BS (2016) Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus. BMC Plant Biol 16:1–16

    Article  Google Scholar 

  • Wright GC, Nageswara Rao RC, Farquhar GD (1994) Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97

    Article  Google Scholar 

  • Yu SL (2011) Peanut Genetics and Breeding in China. Shanghai Scientific and Technology Press, Shanghai, China (in Chinese). ISBN: 978-7-5478-0610-4/S-23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boshou Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, B. (2017). Germplasm Characterization and Trait Discovery in Peanut. In: Varshney, R., Pandey, M., Puppala, N. (eds) The Peanut Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-63935-2_5

Download citation

Publish with us

Policies and ethics