Skip to main content

Variograms of Soil Properties for Agricultural and Environmental Applications

  • Chapter
  • First Online:
Pedometrics

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

The previous chapter describes how precision agriculture can be used to improve farm management to achieve economic and environmental benefits. Short-range differences in soil attributes mean that spatially differentiated management can create economic or environmental benefits. Effective precision agriculture requires accurate soil mapping at subfield scales so that management practices can be modified. Improvements in farming technology, for instance, GPS-controlled farm equipment, decrease the difficulty and cost associated with spatially differentiated management. This improves the ease of implementation and makes high-resolution soil maps more valuable.

“Think left and think right and think low and think high. Oh, the things you can think up if only you try”!

DR Suess

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In some cases the magnitude of the nugget and partial sill is extremely small compared to the magnitude of the standard deviation. This may suggest that the data has been transformed in some way before the variogram has been fit. We have reported the results as in the original article. These results should be interpreted with particular caution.

References

  • Adderley WP, Jenkins DA, Sinclair EL, Stevens PA, Verinumber I (1997) The influence of soil variability on tree establishment at. Soil Use Manag 13:1–8

    Google Scholar 

  • Amirinejad AA, Kamble K, Aggarwal P, Chakraborty D, Pradhan S, Mittal RB (2011) Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma 160(3–4):292–303. doi:10.1016/j.geoderma.2010.09.021

    Article  Google Scholar 

  • Ayoubi S, Zamani SM, Khormali F (2007) Spatial variability of some soil properties for site specific farming in northern Iran. Int J Plant Prod 1(2):225–236

    Google Scholar 

  • Bai YR, Wang YK (2011) Spatial variability of soil chemical properties in a jujube slope on the loess plateau of China. Soil Sci 176(10):550–558. doi:10.1097/SS.0b013e3182285cfd

    Article  Google Scholar 

  • Birrell SJ, Sudduth KA, Kitchen NR (1996) Nutrient mapping implications of short-range variability. In: Precision agriculture, proceedings of the third international conference, p 207

    Google Scholar 

  • Cahn MD, Hummel JW, Brouer BH (1994) Spatial analysis of soil fertility for site-specific crop management. Soil Sci Soc Am J 3:1240–1248

    Article  Google Scholar 

  • Camacho-Tamayo JH, Luengas CA, Leiva FR (2008) Effect of agricultural intervention on the spatial variability of some soils chemical properties in the Eastern Plains of Colombia. Chil J Agric Res 68(1):42–55. Retrieved from <Go to ISI>://000256940500005

    Article  Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Turco RF, Konopka A (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Campbell JB (1977) Spatial variation of sand content and pH within single contiguous delineations of two soil mapping units. Soil Sci Soc Am J 42(3):460–464. doi:10.2136/sssaj1978.03615995004200030017x

    Article  Google Scholar 

  • Chatterjee S, Santra P, Majumdar K, Ghosh D, Das I, Sanyal SK (2015) Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India. Environ Monit Assess 187(4):1–17. doi:10.1007/s10661-015-4414-9

    Article  Google Scholar 

  • Chung SO, Kung IK, Sung KH, Sudduth KA, Drummond ST (2008) Analysis of spatial variability in a Korean Paddy field using median polish detrending. J Biosyst Eng 33(5):362–369. doi:10.5307/JBE.2008.33.5.362

    Article  Google Scholar 

  • de Souza ZM, Cerri DGP, Magalhães PSG, Siqueira DS (2010) Variabilidade espacial de atributos do solo e produtividade da cultura de cana-de-açúcar em relação a localização topográfica. Rev Bras Engenharia Agric Ambient 14(12):1250–1256. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-78650798321&partnerID=tZOtx3y1

  • Delcourt H, Darius PL, DeBaerdemaeker J (1996) The spatial variability of some aspects of topsoil fertility in two Belgian fields. Comput Electron Agric 14(2–3):179–196. doi:10.1016/0168-1699(95)00047-X

    Article  Google Scholar 

  • Everett MW, Pierce FJ (1996). Variability of com yield and soil profile nitrates in relation to site-specific n management. In: Precision agriculture, proceedings of the 3rd international conference, p 43

    Google Scholar 

  • Farooque A a, Zaman QU, Schumann AW, Madani A, Percival DC (2012) Response of wild blueberry yield to spatial variability of soil properties. Soil Sci 177(1):56–68. doi:10.1097/SS.0b013e3182376ed6

    Article  Google Scholar 

  • Ferraz G, Da Silva F, Carvalho LCC, Alves MDC, Franco BC (2012) Spatial and temporal variability of phosphorous, potassium and of the yield of a coffee field. Eng Agríc Jaboticabal 32:140–150. doi:10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Frogbrook ZL, Oliver MA, Salahi M, Ellis RH (2002) Exploring the spatial relations between cereal yield and soil chemical properties and the implications for sampling. Soil Use Manag 18:1–9. doi:10.1079/SUM200186

    Article  Google Scholar 

  • Ganawa S, Soom EM, Amin MM, Musa MH, Rashid A, Shariff M, Wayayok A (2003) Spatial variability of total nitrogen, and available phosphorus of large rice field in. Sci Asia 29(2003):7–12

    Article  Google Scholar 

  • Goovaerts P, Chiang CN (1993) Temporal persistence of spatial patterns for mineralisable nitrogen and selected soil properties. Soil Sci Soc Am J 57:372–381

    Article  Google Scholar 

  • Gutierrez CAG, Cortes CA, Camacho-Tamayo JH (2010) Spatial variability of some chemical. Rev UDCA Actualidad Divulg Cient 13:87–95

    Google Scholar 

  • Kerry R, Oliver MA (2003) Variograms of ancillary data to aid sampling for soil surveys. Precis Agric 4(3):261–278. doi:10.1023/A:1024952406744

    Article  Google Scholar 

  • Kerry R, Oliver MA (2004) Average variograms to guide soil sampling. Int J Appl Earth Obs Geoinf 5(4):307–325. doi:10.1016/j.jag.2004.07.005

    Article  Google Scholar 

  • Kerry R, Oliver MA (2007) Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 140(4):383–396. doi:10.1016/j.geoderma.2007.04.019

    Article  Google Scholar 

  • Kerry R, Oliver MA (2008) Determining nugget: sill ratios of standardized variograms from aerial photographs to krige sparse soil data. Precis Agric 9(1–2):33–56. doi:10.1007/s11119-008-9058-0

    Article  Google Scholar 

  • Kilic K, Kilic S, Kocyigit R (2012) Assessment of spatial variability of soil properties in areas under different land use, Bulgarian Journal of Agricultural Science 18(5):722–732

    Google Scholar 

  • Kristensen K, Simmelsgaard SE, Djurhuus JD, Olesen SE (1995) Spatial variability of soil physical and chemical parameters. In: Proceedings of the seminar on site specific farming, pp 39–55

    Google Scholar 

  • Kumhalova J, Kumhala F, Kroulik M, Matejkova S (2011) The impact of topography on soil properties and yield and the effects of weather conditions. Precis Agric 12(6):813–830. doi:10.1007/s11119-011-9221-x

    Article  Google Scholar 

  • Laslett GM, McBratney AB, Pahl PJ, Hutchinson MF (1987) Comparison of several spatial prediction methods for soil pH. Eur J Soil Sci 38(2):325–341. Retrieved from http://dx.doi.org/10.1111/j.1365-2389.1987.tb02148.x

    Article  Google Scholar 

  • Liu G-S, Wang X-Z, Zhang Z-Y, Zhang C-H (2008) Spatial variability of soil properties in a tobacco field of Central China. Soil Sci 173(9):659–667. doi:10.1097/SS.0b013e3181847ea0

    Article  Google Scholar 

  • Liu G-S, Jiang H-L, Liu S-D, Wang X-Z, Shi H-Z, Yang Y-F, … Gu J-G (2010) Comparison of kriging interpolation precision with different soil sampling intervals for precision agriculture. Soil Sci, 175(8), 405–415. doi:10.1097/SS.0b013e3181ee2915

    Article  Google Scholar 

  • Lopez-Granados F, Jurado-Exposito M, Atenciano S, Garcia-Ferrer A, Sanchez de la Orden M, Garcia-Torres L (2002) Spatial variability of agricultural soil parameters in southern Spain. Plant Soil 1:319–326. doi:10.1023/A:1021568415380

    Article  Google Scholar 

  • Machado L d O, Lana ÂMQ, Lana RMQ, Guimarães EC, Ferreira CV (2007) Variabilidade espacial de atributos químicos do solo em áreas sob sistema plantio convencional. Rev Bras Ciênc Solo 31(3):591–599. doi:10.1590/S0100-06832007000300019

    Article  Google Scholar 

  • McBratney AB, Pringle MJ (1999) Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precis Agric 1:125–152. doi:10.1023/a:1009995404447

    Article  Google Scholar 

  • McBratney A, Clarke SF, Thomson HM (1985) pH, electrical conductivity and bicarbonate-extractable phosphorus values for soil specimens from a one hectare area at Myall Vale Research Station, Narrabri. CSIRO Div Soils Tech Memo 25:1985

    Google Scholar 

  • Miller MP, Singer MJ, Nielsen DR (1988) Spatial variability of wheat yield and soil properties on complex hills. Soil Sci Soc Am J 52(4):1133. doi:10.2136/sssaj1988.03615995005200040045x

    Article  Google Scholar 

  • Molin JP, Di G, Faulin C (2013) Spatial and temporal variability of soil electrical conductivity related to soil moisture. Sci Agric 70:1–5

    Article  Google Scholar 

  • Mondo VHV, Gomes Junior FG, Pinto TLF, de Marchi JL, Montomiya AV d A, Molin JP, Cicero SM (2012) Spatial variability of soil fertility and its relationship with seed physiological potential in a soybean production area. Rev Bras Sementes 34(2):193–201. doi:10.1590/S0101-31222012000200002

    Article  Google Scholar 

  • Mulla DJ (1993). Mapping and managing spatial patterns in soil fertility and crop yield. Soil Specif Crop Manag 15 pp 15–26

    Google Scholar 

  • Nanni MR, Povh FP, Demattê JAM, De Oliveira RB, Chicati ML, Cezar E (2011) Optimum size in grid soil sampling for variable rate application in site-specific management. Sci Agric 68(3):386–392. doi:10.1590/S0103-90162011000300017

    Article  Google Scholar 

  • Nolin MC, Guertin SP, Wang C (1996) Within field spatial variability of soil nutrients and corn yield in a montreal lowlands clay soil. In: Precision agriculture, proceedings of the 3rd international conference, pp 257–270

    Google Scholar 

  • Nouri H, Amin MSM, Razavi SJ, Anuar AR, Aimrun W, Borujeni SC (2010) Sugar beet performance affected by uniformity of N fertigation. Am J Appl Sci 7(3):366–370

    Article  Google Scholar 

  • Oliver MA, Webser R (1987) The elucidation of soil pattern in the Wyre Forest of the west midlands, England I multivariate distribution. J Soil Sci 38(2):279–291. doi:10.1111/j.1365-2389.1987.tb02145.x

    Article  Google Scholar 

  • Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena 113:56–69. doi:10.1016/j.catena.2013.09.006

    Article  Google Scholar 

  • Panagopoulos T, Antunes MDC (2008) Integrating geostatistics and GIS for assessment of erosion risk on low density Quercus suber woodlands of South Portugal. Arid Land Res Manag 22(2):159–177. doi:10.1080/15324980801958000

    Article  Google Scholar 

  • Pettitt AN, McBratney AB (1993) Spatial sampling designs for estimating variance components. J R Stat Soc Ser C (Appl Stat) 42(1):185–209

    Google Scholar 

  • Pierce FJ, Warnke DD, Everett MW (1995). No Title. Site Specif Manag Agric Syst 133

    Google Scholar 

  • Pribyl DW (2010) A critical review of the conventional SOC to SOM conversion factor. Geoderma 156(3–4):75–83. doi:10.1016/j.geoderma.2010.02.003

    Article  Google Scholar 

  • Shatar TM (1996) Site specific crop management – relationships between edaphic factors and sorghum yield. The University of Sydney, Sydney

    Google Scholar 

  • Shouse PJ, Gerik TJ, Russell WB, Cassell DK (1990) Spatial distribution of soil particle size and aggregate stability index in a clay soil. Soil Sci. doi:10.1097/00010694-199006000-00006

    Article  Google Scholar 

  • Shukla MK, Slater BK, Lal R, Cepuder P (2004) Spatial variability of soil properties and potential management classification of a Chernozemic field in lower Austria. Soil Sci 169(Cv):852–860. doi:10.1097/00010694-200412000-00004

    Article  Google Scholar 

  • Sidorova V a, Zhukovskii EE, Lekomtsev PV, Yakushev VV (2012) Geostatistical analysis of the soil and crop parameters in a field experiment on precision agriculture. Eurasian Soil Sci 45(8):783–792. doi:10.1134/S1064229312080066

    Article  Google Scholar 

  • Silva VR, Reichert JM, Storck L, Feijo S (2003) Seção Iv – Fertilidade Do Solo E Nutrição De Plantas Ao Potássio Em Um Argissolo Sob. Rev Bras Ciênc Solo 5:565–571

    Google Scholar 

  • Tabor JA, Warrick AW, Myers DE, Pennington DA (1985) Spatial variability of nitrate in irrigated cotton: II. Soil nitrate and correlated Variables1. Soil Sci Soc Am J. doi:10.2136/sssaj1985.03615995004900020024x

    Article  Google Scholar 

  • Thompson AN, Shaw JN, Mask PL, Touchton JT, Rickman D (2004) Soil sampling techniques for Alabama, USA grain fields. Precis Agric 5(4):345–358. doi:10.1023/B:PRAG.0000040805.01967.b0

    Article  Google Scholar 

  • Truong PN, Heuvelink GBM, Gosling JP (2013) Web-based tool for expert elicitation of the variogram. Comput Geosci 51:390–399. doi:10.1016/j.cageo.2012.08.010

    Article  Google Scholar 

  • Uehara G, Trangmar BB, Yost RS (1985) In: Nielsen DR, Bouma J (eds) Soil spatial variability. PUDOC, Wageningen

    Google Scholar 

  • van Meirvenne M, Hofman G (1989) Spatial variability of soil nitrate nitrogen after potatoes and its change during winter. Plant Soil 120:103

    Article  Google Scholar 

  • Wade SD, Foster IDL, Baban SMJ (1996) The spatial variability of soil nitrates in arable and pasture landscapes: implications for the development of geographical information system models of nitrate leaching. Soil Use Manag 12 pp 95–101

    Article  Google Scholar 

  • Webster R, McBratney AB (1987) Mapping soil fertility at Broom’s barn by simple kriging. J Sci Food Agric 38(2):97–115. doi:10.1002/jsfa.2740380203

    Article  Google Scholar 

  • Webster R, Oliver M (2001) Geostatistics for environmental scientists. Wiley, West Sussex

    Google Scholar 

  • Williams RD, Ahuja LR, Naney JW, Ross JD, Barnes BB (1987) Spatial trends and variability of soil properties and crop yield in a small watershed. Trans ASAE 30(6):1653–1660

    Article  Google Scholar 

  • Yana J, Lee CK, Umeda M, Kosaki T (2000) Spatial variability of soil chemical properties in a paddy field spatial variability of soil chemical properties in a. Soil Sci Plant Nutr 0768(January). doi:10.1080/00380768.2000.10408800

  • Zanão Júnior LA, Lana RMQ, Carvalho-Zanão MP, Guimarães EC (2010) Variabilidade espacial de atributos químicos em diferentes profundidades em um Latossolo em sistema de plantio direto. Rev Ceres 57(3):429–438. doi:10.1590/S0034-737X2010000300021

    Article  Google Scholar 

  • Zhang X, Jiang L, Qiu X, Qiu J, Wang J, Zhu Y (2016) An improved method of delineating rectangular management zones using a semivariogram-based technique. Comput Electron Agric 121:74–83. doi:10.1016/j.compag.2015.11.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paterson, S., McBratney, A.B., Minasny, B., Pringle, M.J. (2018). Variograms of Soil Properties for Agricultural and Environmental Applications. In: McBratney, A., Minasny, B., Stockmann, U. (eds) Pedometrics. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-63439-5_21

Download citation

Publish with us

Policies and ethics