Skip to main content

Ectomycorrhizal Diversity in Beech Dominated Stands in Central Europe

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Mycorrhizal fungi are essential for ecosystem functioning. They are the most important pathway of plant-derived C into the soil and facilitate most of the N and P uptake. In boreal and temperate forest ecosystems, the subgroup of ectomycorrhizas is of special significance, and ectomycorrhizal symbiosis is obligatory for a number of tree species. These fungal assemblages can be highly diverse, which is often contrasting with the relatively low number of tree species. This is also true for small monoculture stands, where several studies showed dozens of different ectomycorrhizal species. The elemental mechanisms that drive ectomycorrhizal community composition and structure, especially on larger scales, are still subject of debate. In particular, the role and function of most of the rare species remain largely unknown. In this chapter, we investigate the structural traits of ectomycorrhizal communities of European beech (Fagus sylvatica), one of the most important tree species in temperate deciduous forest ecosystems. We therefore compiled data from ten different beech dominated sites across a European gradient to seek for ubiquitously valid statements regarding the species composition and community structure of ectomycorrhizae. A total of 205 ectomycorrhizal species were detected, of which 45% and 35% could be identified to the species and genus level, respectively. The majority of them are site-specific and found in very low abundances. A few species with narrow host range such as Lactarius subdulcis, Laccaria amethystina or Lactarius pallidus show low abundances on many sites. Three species, namely Hebeloma sinapizans, Lactarius salmonicolor and Elaphomyces aculeatus, appeared to be very dominant on one respective site. Cenococcum geophilum and Russula ochroleuca, both considered multi-host species, occur at all or rather several sites with relatively high abundances. Species ranking-abundance curves revealed a universal distribution pattern, with few dominant ectomycorrhizal species and a long tail of rare species. This shape is regardless of stand age and management practice, though no statistically significant correlations with species richness and the latter mentioned parameters could be found. By looking at several community structures, we were able to add another dimension of rarity and found most of the species not only being rare at a particular site, but also rare in terms of single appearance across several analysed stands. However, a vast part of ectomycorrhizal fungal species still remains unidentified. This circumstance further impedes our understanding concerning the occurrence of rare species. Yet, understanding their functional behaviour is of particular significance, as they could pose a key factor in ecosystem functioning, especially under changing climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer, R. (2001). Exploration types of ectomycorrhizae. Mycorrhiza, 11, 107–114.

    Article  Google Scholar 

  • Allen, E. B., Allen, M. F., Helm, D. J., Trappe, J. M., Molina, R., & Rincon, E. (1995). Patterns and regulation of mycorrhizal plant and fungal diversity. Plant and Soil, 170, 47–62.

    Article  CAS  Google Scholar 

  • Baar, J., & Stanton, N. (2000). Ectomycorrhizal fungi challenged by saprotrophic basidiomycetes and soil microfungi under different ammonium regimes in vitro. Mycological research, 104, 691–697.

    Article  Google Scholar 

  • Buée, M., Vairelles, D., & Garbaye, J. (2005). Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus sylvatica) forest subjected to two thinning regimes. Mycorrhiza, 15, 235–245.

    Article  PubMed  Google Scholar 

  • Buée, M., Courty, P., Mignot, D., & Garbaye, J. (2007). Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biology and Biochemistry, 39, 1947–1955.

    Article  Google Scholar 

  • Buscot, F. (2015). Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. Journal of Plant Physiology, 172, 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Cairney, J. (1999). Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza, 9, 125–135.

    Article  Google Scholar 

  • Cairney, J. W., & Chambers, S. M. (2013). Ectomycorrhizal fungi: Key genera in profile. Berlin: Springer.

    Google Scholar 

  • Chagnon, P. L., Bradley, R. L., & Klironomos, J. N. (2012). Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytologist, 194, 307–312.

    Article  PubMed  Google Scholar 

  • Courty, P. E., Pritsch, K., Schloter, M., Hartmann, A., & Garbaye, J. (2005). Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytologist, 167, 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Cox, F., Barsoum, N., Lilleskov, E. A., & Bidartondo, M. I. (2010). Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecology Letters, 13, 1103–1113.

    Article  PubMed  Google Scholar 

  • Dahlberg, A. (2001). Community ecology of ectomycorrhizal fungi: An advancing interdisciplinary field. New Phytologist, 150, 555–562.

    Article  Google Scholar 

  • Di Marino, E., Montecchio, L., Scattolin, L., Abs, C., & Agerer, R. (2009). The ectomycorrhizal community structure in European beech forests differing in coppice shoot age and stand features. Journal of Forestry, 107, 250–259.

    Google Scholar 

  • Druebert, C., Lang, C., Valtanen, K., & Polle, A. (2009). Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant, Cell & Environment, 32, 992–1003.

    Article  CAS  Google Scholar 

  • Ellenberg, H., & Leuschner, C. (1996). Vegetation mitteleuropas mit den Alpen. Stuttgart: Ulmer.

    Google Scholar 

  • Erland, S., & Taylor, A. F. (2002). Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In Mycorrhizal ecology (pp. 163–200). Dordrecht: Springer.

    Google Scholar 

  • Gardes, M., & Bruns, T. (1996). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Above-and below-ground views. Canadian Journal of Botany, 74, 1572–1583.

    Article  Google Scholar 

  • Godbold, D. L., Hoosbeek, M. R., Lukac, M., Cotrufo, M. F., Janssens, I. A., et al. (2006). Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil, 281, 15–24.

    Article  CAS  Google Scholar 

  • Grebenc, T., & Kraigher, H. (2007). Types of ectomycorrhiza of mature beech and spruce at ozone-fumigated and control forest plots. Environmental Monitoring and Assessment, 128, 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Grebenc, T., Christensen, M., Vilhar, U., Cǎter, M., Martín, M. P., et al. (2009). Response of ectomycorrhizal community structure to gap opening in natural and managed temperate beech-dominated forests. Canadian Journal of Forest Research, 39, 1375–1386.

    Article  Google Scholar 

  • Grogan, P., Baar, J., & Bruns, T. (2000). Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. Journal of Ecology, 88, 1051–1062.

    Article  Google Scholar 

  • Haselwandter, K., & Read, D. (1980). Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia, 45, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie, J. E., & Hobbie, E. A. (2006). 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology, 87, 816–822.

    Article  PubMed  Google Scholar 

  • Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology, peeking into the black box. Molecular Ecology, 10, 1855–1871.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press.

    Google Scholar 

  • Jansa, J., Bukovská, P., & Gryndler, M. (2013). Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts–or just soil free-riders. Frontiers in Plant Science, 4, 134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen, A. E. (1990). Conservation of fungi in Europe. Mycologist, 4, 83–85.

    Article  Google Scholar 

  • Johnson, D., & Gilbert, L. (2015). Interplant signalling through hyphal networks. New Phytologist, 205, 1448–1453.

    Article  PubMed  Google Scholar 

  • Johnson, D., Ijdo, M., Genney, D. R., Anderson, I. C., & Alexander, I. J. (2005). How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? Journal of Experimental Botany, 56, 1751–1760.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson, T., Kokalj, S., Finlay, R., & Erland, S. (1999). Ectomycorrhizal community structure in a limed spruce forest. Mycological Research, 103, 501–508.

    Article  Google Scholar 

  • Jonsson, L. M., Nilsson, M. C., Wardle, D. A., & Zackrisson, O. (2001). Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos, 93, 353–364.

    Article  Google Scholar 

  • Kernaghan, G. (2005). Mycorrhizal diversity, cause and effect? Pedobiologia, 49, 511–520.

    Article  Google Scholar 

  • Kjøller, R. (2006). Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiology Ecology, 58, 214–224.

    Article  PubMed  Google Scholar 

  • Koide, R. T., Xu, B., Sharda, J., Lekberg, Y., & Ostiguy, N. (2005). Evidence of species interactions within an ectomycorrhizal fungal community. New Phytologist, 165, 305–316.

    Article  PubMed  Google Scholar 

  • Koide, R. T., Courty, P. E., & Garbaye, J. (2007). Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytologist, 174, 240–243.

    Article  PubMed  Google Scholar 

  • Kraigher, H., Petkovšek, S. A. S., Grebenc, T., & Simončič, P. (2007). Types of ectomycorrhiza as pollution stress indicators: Case studies in Slovenia. Environmental Monitoring and Assessment, 128, 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Lang, C., Seven, J., & Polle, A. (2011). Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza, 21, 297–308.

    Article  PubMed  Google Scholar 

  • Lilleskov, E. A., & Parrent, J. L. (2007). Can we develop general predictive models of mycorrhizal fungal community–environment relationships? New Phytologist, 174, 250–256.

    Article  CAS  PubMed  Google Scholar 

  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J., et al. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804–808.

    Article  CAS  PubMed  Google Scholar 

  • Magurran, A. (2004). Measuring biological diversity. Oxford: Blackwells.

    Google Scholar 

  • Molina, R., Massicotte, H., & Trappe, J. M. (1992). Specificity phenomena in mycorrhizal symbioses, community-ecological consequences and practical implications. In M. F. Allen (Ed.), Mycorrhizal functioning: An integrative plant-fungal process (pp. 357–423). London: Chapman and Hall.

    Google Scholar 

  • Nara, K. (2008). Community developmental patterns and ecological functions of ectomycorrhizal fungi, implications from primary succession. In Mycorrhiza (pp. 581–599). Dordrecht: Springer.

    Google Scholar 

  • Pena, R., Offermann, C., Simon, J., Naumann, P. S., Geßler, A., et al. (2010). Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Applied and Environmental Microbiology, 76, 1831–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickles, B. J., Genney, D. R., Potts, J. M., Lennon, J. J., Anderson, I. C., & Alexander, I. J. (2010). Spatial and temporal ecology of Scots pine ectomycorrhizas. New Phytologist, 186, 755–768.

    Article  CAS  PubMed  Google Scholar 

  • Pickles, B. J., Genney, D. R., Anderson, I. C., & Alexander, I. J. (2012). Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structured by competitive interactions. Molecular Ecology, 21, 5110–5123.

    Article  PubMed  Google Scholar 

  • Plett, J. M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S. J., et al. (2014). Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences, 111, 8299–8304.

    Article  CAS  Google Scholar 

  • Pozo, M. J., López-Ráez, J. A., Azcón-Aguilar, C., & García-Garrido, J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205, 1431–1436.

    Article  CAS  PubMed  Google Scholar 

  • Pritsch, K., Esperschuetz, J., Haesler, F., Raidl, S., Winkler, B., & Schloter, M. (2009). Structure and activities of ectomycorrhizal and microbial communities in the rhizosphere of Fagus sylvatica under ozone and pathogen stress in a lysimeter study. Plant and Soil, 323, 97–109.

    Article  CAS  Google Scholar 

  • Reich, M., Kohler, A., Martin, F., & Buee, M. (2009). Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities. BMC Microbiology, 9, 1.

    Article  Google Scholar 

  • Rineau, F., & Garbaye, J. (2010). Effects of liming on potential oxalate secretion and iron chelation of beech ectomycorrhizal root tips. Microbial Ecology, 60, 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rumberger, M. D., Münzenberger, B., Bens, O., Ehrig, F., Lentzsch, P., & Hüttl, R. F. (2004). Changes in diversity and storage function of ectomycorrhiza and soil organoprofile dynamics after introduction of beech into Scots pine forests. Plant and Soil, 264, 111–126.

    Article  CAS  Google Scholar 

  • Simard, S.W., Jones, M.D., Durall, D.M. (2003). Carbon and nutrient fluxes within and between mycorrhizal plants. In Mycorrhizal ecology (pp. 33–74). Dordrecht: Springer.

    Google Scholar 

  • Smith, S., & Read, D. (2008). Mycorrhizal symbiosis, 3rd. San Diego: Academic.

    Google Scholar 

  • Smith, B., & Wilson, J. B. (1996). A consumer’s guide to evenness indices. Oikos, 70–82.

    Google Scholar 

  • Smith, M. E., Douhan, G. W., & Rizzo, D. M. (2007). Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytologist, 174, 847–863.

    Article  CAS  PubMed  Google Scholar 

  • Southworth, D., He, X. H., Swenson, W., Bledsoe, C., & Horwath, W. (2005). Application of network theory to potential mycorrhizal networks. Mycorrhiza, 15, 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, A. F. (2002). Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. In Diversity and integration in Mycorrhizas (pp. 19–28). Dordrecht: Springer.

    Google Scholar 

  • Taylor, A., Martin, F., & Read, D. (2000). Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L.) along north-south transects in Europe. In Carbon and nitrogen cycling in European forest ecosystems (pp. 343–365). Dordrecht: Springer.

    Google Scholar 

  • Tedersoo, L., Suvi, T., Larsson, E., & Kõljalg, U. (2006). Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycological research, 110, 734–748.

    Article  PubMed  Google Scholar 

  • Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences, USA, 101, 10854–10861.

    Article  CAS  Google Scholar 

  • Trappe, J. M. (1962). Cenococcum graniforme – Its distribution, ecology, mycorrhiza formation, and inherent variation. PhD dissertation, University of Washington, Seattle, Washington, USA.

    Google Scholar 

  • Vandermeer, J. H. (1972). Niche theory. Annual Review of Ecology and Systematics, 107–132.

    Google Scholar 

  • Wardle, D. A. (1999). Is “sampling effect” a problem for experiments investigating biodiversity-ecosystem function relationships? Oikos, 403–407.

    Google Scholar 

  • Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, USA, 96, 1463–1468.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Marie Curie grant GPF333996 LINKTOFUN to DG, and by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program NPU I, grant No. LO1415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Rosinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rosinger, C., Sandén, H., Godbold, D.L. (2017). Ectomycorrhizal Diversity in Beech Dominated Stands in Central Europe. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_9

Download citation

Publish with us

Policies and ethics