Skip to main content

Ectomycorrhizal Fungal Responses to Forest Liming and Wood Ash Addition: Review and Meta-analysis

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Large-scale liming and wood ash addition are common practices to mitigate soil and water acidification in temperate and boreal forests. In addition, wood ash recycles nutrients removed at harvest to the forest ecosystem. Both liming and wood ash applications typically increase soil pH by 1–2 units. Therefore, they affect a range of soil processes and organisms including ectomycorrhizal (EM) fungi which are vital for the nutrition of many tree species. Here we review field studies reporting the effects of lime and wood ash amendments on EM fungi. We systematically compiled studies where known amounts of ash or lime were distributed to plots paired with comparable control plots, and where mycorrhizal variables were recorded. For a subset of studies meeting explicit criteria, we performed meta-analyses using overall mycorrhizal abundance, species richness or the abundance of specific fungal taxa as response variables. Guided by availability of data, the focus is on Nordic coniferous forests. Although the reviewed field studies varied widely in dosage and experimental setup they clearly demonstrated that liming and wood ash amendments influence EM fungal species composition. Across studies, species belonging to the lineages Cortinarius and Russula-lactarius (Basidiomycota), particularly Russula ochroleuca, decreased in relative abundance, while species within the Tuber-helvella (Ascomycota) increased. Particular species within the Amphinema-tylospora lineage responded in opposite directions; Tylospora fibrillosa decreased in relation to the control, while Amphinema byssoides increased. The significant changes in species or clade abundances were in the range of 5–20% compared to non-treated plots. In contrast, neither the belowground mycorrhizal biomass nor species richness responded to liming or wood ash applications. We conclude that liming and wood ash amendments cause consistent EM fungal species dominance shifts, but that a high EM fungal biomass and species and phylogenetic richness is maintained on the tree roots. Given the large dispersal potential of many EM fungi, we therefore suggest that these treatments at normal recommended dosages do not pose any immediate threats to EM fungal biodiversity, at least not when applied at relatively small spatial scales. Whether the observed dominance shifts among EM fungal clades have consequences for the functioning of the EM fungal guild, e.g. in relation to nutrient cycling or tree nutrition, is an important question that should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer, R. (1990). Impacts of artificial acid-rain and liming on fruitbody production of ectomycorrhizal fungi. Agriculture, Ecosystems and Environment, 28, 3–8.

    Article  CAS  Google Scholar 

  • Agerer, R. (2001). Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11, 107–114.

    Article  Google Scholar 

  • Agerer, R., Brand, F., & Treu, R. (1989). Systematic aspects of ectomycorrhizas. In Proceedings of the 10th Congress of European Mycologists, Tallinn, Estonia.

    Google Scholar 

  • Agerer, R., Taylor, A. F. S., & Treu, R. (1998). Effects of acid irrigation and liming on the production of fruit bodies by ectomycorrhizal fungi. Plant and Soil, 199, 83–89.

    Article  CAS  Google Scholar 

  • Andersson, S., Nilsson, I., & Valeur, I. (1999). Influence of dolomitic lime on DOC and DON leaching in a forest soil. Biogeochemistry, 47, 297–317.

    Article  CAS  Google Scholar 

  • Antibus, R. K., & Linkins, A. E. (1992). Effects of liming a red pine forest floor on mycorrhizal numbers and mycorrhizal and soil acid–phosphatase activities. Soil Biology and Biochemistry, 24, 479–487.

    Article  Google Scholar 

  • Arnolds, E. (1991). Decline of ectomycorrhizal fungi in Europe. Agriculture, Ecosystems and Environment, 35, 209–244.

    Article  Google Scholar 

  • Augusto, L., Bakker, M. R., & Meredieu, C. (2008). Wood ash applications to temperate forest ecosystems – Potential benefits and drawbacks. Plant and Soil, 306, 181–198.

    Article  CAS  Google Scholar 

  • Baar, J., Horton, T. R., Kretzer, A. M., & Bruns, T. D. (1999). Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand–replacing wildfire. New Phytologist, 143, 409–418.

    Article  Google Scholar 

  • Bakker, M. R., Garbaye, J., & Nys, C. (2000). Effect of liming on the ectomycorrhizal status of oak. Forest Ecology & Managment, 126, 121–131.

    Google Scholar 

  • Bending, G. D., & Read, D. J. (1995). The structure and function of the vegetative mycelium of ectomycorrhizal plants VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytologist, 130, 411–417.

    Article  CAS  Google Scholar 

  • Binkley, D., & Hogberg, P. (1997). Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management, 92, 119–152.

    Article  Google Scholar 

  • Bödeker, I. T. M., Clemmensen, K. E., de Boer, W., Martin, F., Olson, A., & Lindahl, B. D. (2014). Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytologist, 203, 245–256.

    Article  PubMed  Google Scholar 

  • Börja, I., & Nilsen, P. (2009). Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old Scots pine (Pinus sylvestris L.) stands. Plant and Soil, 314, 109–119.

    Article  Google Scholar 

  • Brandrud, T. E., Bakkestuen, V., Aarrestad, P. A., & Direktoratet for naturforvaltning. (2001). Terrengkalking i Suldal, Rogaland – Effekter på vegetasjon og sopp. In: Terrengkalkningsprosjektet. Årsrapport 2000. Terrengkalking for å avgifte surt overfladevann. DN Notat, 2001–2004, 57–76.

    Google Scholar 

  • Brandrud, T.E., Bakkestuen, V., Bendiksen, E., Eilertsen, O., Aarrestad, P.A. (2003). Terrengkalking i Gjerstad, Aust–Agder. Effekter på skogvegetasjon og sopp, NINA Fagrapport, p. 75.

    Google Scholar 

  • Cairney, J. W. G., & Meharg, A. A. (1999). Influences of anthropogenic pollution on mycorrhizal fungal communities. Environmental Pollution, 106, 169–182.

    Article  CAS  PubMed  Google Scholar 

  • Clair, T. A., & Hindar, A. (2005). Liming for the mitigation of acid rain effects in freshwaters: A review of recent results. Environmental Reviews, 13, 91–128.

    Article  CAS  Google Scholar 

  • Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., & Lindahl, B. D. (2015). Carbon sequestration is related to mycorrhizal fungal community shifts during long–term succession in boreal forests. New Phytologist, 205, 1525–1536.

    Article  CAS  PubMed  Google Scholar 

  • Cox, F., Barsoum, N., Lilleskov, E. A., & Bidartondo, M. I. (2010). Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecology Letters, 13, 1103–1113.

    Article  PubMed  Google Scholar 

  • Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C., & Fitter, A. H. (2010). Relative roles of niche and neutral processes in structuring a soil microbial community. ISME Journal, 4, 337–345.

    Article  PubMed  Google Scholar 

  • Erland, S., & Söderström, B. (1991). Effects of lime and ash treatments on ectomycorrhizal infection of Pinus sylvestris L. seedlings planted in a pine forest. Scandinavian Journal of Forest Research, 6, 519–526.

    Article  Google Scholar 

  • Gupta, U. C., Jame, Y. W., Campbell, C. A., Leyshon, A. J., & Nicholaichuk, W. (1985). Boron toxicity and deficiency – A review. Canadian Journal of Soil Science, 65, 381–409.

    Article  CAS  Google Scholar 

  • Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta–analysis of response ratios in experimental ecology. Ecology, 80, 1150–1156.

    Article  Google Scholar 

  • Hibbett, D. S., Gilbert, L. B., & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–508.

    Article  CAS  PubMed  Google Scholar 

  • Högberg, M. N., Högberg, P., & Myrold, D. D. (2007). Is microbial community composition in boreal forest soils determined by pH, C–to–N ratio, the trees, or all three? Oecologia, 150, 590–601.

    Article  PubMed  Google Scholar 

  • Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black–box. Molecular Ecology, 10, 1855–1871.

    Article  CAS  PubMed  Google Scholar 

  • Huettl, R. F., & Zoettl, H. W. (1993). Liming as a mitigation tool in Germany declining forests – Reviewing results from former and recent trials. Forest Ecology and Management, 61, 325–338.

    Article  Google Scholar 

  • Hung, L., & Trappe, J. M. (1983). Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia, 75, 234–241.

    Article  Google Scholar 

  • Ingerslev, M., Skov, S., Sevel, L., & Pedersen, L. B. (2011). Element budgets of forest biomass combustion and ash fertilisation – A Danish case–study. Biomass Bioenergy, 35, 2697–2704.

    Article  CAS  Google Scholar 

  • Jacobson, S., Lundstrom, H., Nordlund, S., Sikstrom, U., & Pettersson, F. (2014). Is tree growth in boreal coniferous stands on mineral soils affected by the addition of wood ash? Scandinavian Journal of Forest Research, 29, 675–685.

    Article  Google Scholar 

  • Jacobsson, S. (1993). Inventering av svampfloran i kalkade provrutor på Hallandsåsen. Jordstjärnan, 14, 13–22.

    Google Scholar 

  • Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., et al. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253–268.

    Article  CAS  Google Scholar 

  • Jonsson, T., Kokalj, S., Finlay, R., & Erland, S. (1999). Ectomycorrhizal community structure in a limed spruce forest. Mycological Research, 103, 501–508.

    Article  Google Scholar 

  • Kårén, O., & Nylund, J. E. (1996). Effects of N–free fertilization on ectomycorrhiza community structure in Norway spruce stands in Southern Sweden. Plant and Soil, 181, 295–305.

    Article  Google Scholar 

  • Kjøller, R., & Clemmensen, K. E. (2009). Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands. Forest Ecology and Management, 257, 2217–2225.

    Article  Google Scholar 

  • Kjøller, R., Nilsson, L. O., Hansen, K., Schmidt, I. K., Vesterdal, L., & Gundersen, P. (2012). Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand–scale nitrogen deposition gradient. New Phytologist, 194, 278–286.

    Article  PubMed  Google Scholar 

  • Klavina, D., Pennanen, T., Gaitnieks, T., Velmala, S., Lazdins, A., Lazdina, D., et al. (2016). The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza, 26, 153–160.

    Article  PubMed  Google Scholar 

  • Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil, 169, 447–470.

    Article  Google Scholar 

  • Kyaschenko, J., Clemmensen, K. E., Hagenbo, A., Karltun, E., & Lindahl, B. D. (2017). Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME Journal, 11, 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, P. E., Uggla, E., & Westling, O. (2001). Långsiktige effekter av skogsmarkskalkning på mark– och markvattenkemi. In: IVL Rapport. IVL Svenska Miljöinstitutet AB, p. 52.

    Google Scholar 

  • Leake, J. R., Read, D. J., Wicklow, D. T., & Söderström, B. (1997). Mycorrhizal fungi in terrestrial habitats. In Environmental and Microbial Relationships (pp. 281–301). Berlin: Springer.

    Google Scholar 

  • Lehto, T. (1994a). Effects of liming and boron fertilization on mycorrhizas of Picea abies. Plant and Soil, 163, 65–68.

    Article  CAS  Google Scholar 

  • Lehto, T. (1994b). Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant and Soil, 163, 69–75.

    Article  CAS  Google Scholar 

  • Lehto, T., & Malkonen, E. (1994). Effects of liming and boron fertilization on boron uptake of Picea abies. Plant and Soil, 163, 55–64.

    Article  CAS  Google Scholar 

  • Lilleskov, E. A., Fahey, T. J., & Lovett, G. M. (2001). Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecological Applications, 11, 397–410.

    Article  Google Scholar 

  • Lilleskov, E. A., Fahey, T. J., Horton, T. R., & Lovett, G. M. (2002a). Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83, 104–115.

    Article  Google Scholar 

  • Lilleskov, E. A., Hobbie, E. A., & Fahey, T. J. (2002b). Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist, 154, 219–231.

    Article  CAS  Google Scholar 

  • Lindahl, B. D., & Tunlid, A. (2015). Ectomycorrhizal fungi – Potential organic matter decomposers, yet not saprotrophs. New Phytologist, 205, 1443–1447.

    Article  CAS  PubMed  Google Scholar 

  • LoBuglio, K. F. (1999). Cenococcum. In Ectomycorrhizal fungi. Key general in profile (pp. 287–309). Berlin: Springer.

    Chapter  Google Scholar 

  • Löfgren, S., Zetterberg, T., Larsson, P.-E., Cory, N., Klarqvist, M., Kronnäs, V., et al. (2008). Skogsmarkskalkningens effekter på kemin i mark, grundvatten och ytvatten i SKOKAL–områdena 16 år efter behandling, Rapport 16. Jönköping: Skogsstyrelsens förlag.

    Google Scholar 

  • Lundström, U. S., Bain, D. C., Taylor, A. F. S., & van Hees, P. A. W. (2003a). Effects of acidification and its mitigation with lime and wood ash on forest soil processes: A review. Water, Air, Soil Pollution Focus, 3, 5–28.

    Article  Google Scholar 

  • Lundström, U. S., Bain, D. C., Taylor, A. F. S., van Hees, P. A. W., Geibe, C. E., Holmström, S. J. M., et al. (2003b). Effects of acidification and its mitigation with lime and wood ash on forest soil processes in southern Sweden. A joint multidisciplinary study. Water, Air Soil Pollution Focus, 3, 167–188.

    Article  Google Scholar 

  • Mahmood, S., Finlay, R. D., Wallander, H., & Erland, S. (2002). Ectomycorrhizal colonisation of roots and ash granules in a spruce forest treated with granulated wood ash. Forest Ecology and Management, 160, 65–74.

    Article  Google Scholar 

  • Majdi, H., & Viebke, C. R. (2004). Effects of fertilization with dolomite lime plus PK or wood ash on root distribution and morphology in a Norway spruce stand in Southwest Sweden. Forest Science, 50, 802–809.

    Google Scholar 

  • Majdi, H., Truus, L., Johansson, U., Nylund, J. E., & Wallander, H. (2008). Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden. Forest Ecology and Management, 255, 2109–2117.

    Article  Google Scholar 

  • Mottonen, M., Lehto, T., & Aphalo, P. J. (2001). Growth dynamics and mycorrhizas of Norway spruce (Picea abies) seedlings in relation to boron supply. Trees–Structure and Function, 15, 319–326.

    Article  CAS  Google Scholar 

  • Nowotny, I., Dahne, J., Klingelhofer, D., & Rothe, G. M. (1998). Effect of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.) Plant and Soil, 199, 29–40.

    Article  CAS  Google Scholar 

  • Nyberg, L., Lundstrom, U., Söderberg, U., Danielsson, R., & van Hees, P. (2001). Does soil acidification affect spruce needle chemical composition and tree growth? Water, Air, Soil Pollution Focus, 1, 241–263.

    Article  CAS  Google Scholar 

  • Palmberger, B., Egnell, G. (2006). Miljöeffekter av skogsbränsleuttag och askåterföring i Sverige. En syntes av Energimyndighetens forskningsprogram 1997 till 2004. Statens Energimyndighet.

    Google Scholar 

  • Persson, H., & Ahlström, K. (1994). The effects of alkalizing compounds on fine–root growth in a Norway spruce stand in Southwest Sweden. Journal of Environmental Science and Health, 29, 803–820.

    Google Scholar 

  • Qian, X. M., Kottke, I., & Oberwinkler, F. (1998). Influence of liming and acidification on the activity of the mycorrhizal communities in a Picea abies (L.) Karst. stand. Plant and Soil, 199, 99–109.

    Article  CAS  Google Scholar 

  • Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems: A journey towards relevance? New Phytologist, 157, 475–492.

    Article  Google Scholar 

  • Reid, C., & Watmough, S. A. (2014). Evaluating the effects of liming and wood–ash treatment on forest ecosystems through systematic meta–analysis. Canadian Journal of Forest Research, 44, 867–885.

    Article  CAS  Google Scholar 

  • Rineau, F., & Garbaye, J. (2009a). Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts. Mycorrhiza, 19, 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Rineau, F., & Garbaye, J. (2009b). Effects of liming on ectomycorrhizal community structure in relation to soil horizons and tree hosts. Fungal Ecology, 2, 103–109.

    Article  Google Scholar 

  • Rineau, F., & Garbaye, J. (2010). Effects of liming on potential oxalate secretion and iron chelation of beech ectomycorrhizal root tips. Microbial Ecology, 60, 331–339.

    Google Scholar 

  • Rineau, F., Maurice, J. P., Nys, C., Voiry, H., & Garbaye, J. (2010). Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Annals of Forest Science, 67, 1–12.

    Article  Google Scholar 

  • Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (1999). MetaWin: Statistical Software for Meta–Analysis, Version 2.0. Sunderland: Sinauer Associates.

    Google Scholar 

  • Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4, 1340–1351.

    Article  PubMed  Google Scholar 

  • R–project. (2014). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis. London: Academic Press.

    Google Scholar 

  • Stendell, E. R., Horton, T. R., & Bruns, T. D. (1999). Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research, 103, 1353–1359.

    Article  Google Scholar 

  • Suz, L. M., Barsoum, N., Benham, S., Dietrich, H. P., Fetzer, K. D., Fischer, R., et al. (2014). Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Molecular Ecology, 23, 5628–5644.

    Article  CAS  PubMed  Google Scholar 

  • Tamm, C. O. (1991). Nitrogen in terrestrial habitats. Berlin: Springer.

    Book  Google Scholar 

  • Taylor, A. F. S., & Alexander, I. (2005). The ectomycorrhizal symbiosis: Life in the real world. Mycologist, 19, 102–112.

    Article  Google Scholar 

  • Taylor, A. F. S., & Finlay, R. D. (2003). Effects of liming and ash application on below ground ectomycorrhizal community structure in two Norway spruce forests. Water, Air, Soil Pollution Focus, 3, 63–76.

    Article  CAS  Google Scholar 

  • Taylor, A. F. S., Brand, F., Read, D. J., Lewis, D. H., Fitter, A. H., & Alexander, I. J. (1992). Reaction of the natural Norway spruce mycorrhizal flora to liming and acid irrigation. In Mycorrhizas in ecosystems (p. 404). Wallingford: C.A.B. International.

    Google Scholar 

  • Taylor, A. F. S., Martin, F., Read, D. J., & Schulze, E. D. (2000). Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) along north–south transects in Europe. In Carbon and nitrogen cycling in European forest ecosystems (pp. 343–365). Berlin: Springer.

    Chapter  Google Scholar 

  • Tedersoo, L., May, T. W., & Smith, M. E. (2010). Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20, 217–263.

    Article  PubMed  Google Scholar 

  • Tedersoo, L., Bahram, M., Polme, S., Koljalg, U., Yorou, N. S., Wijesundera, R., et al. (2014). Global diversity and geography of soil fungi. Science, 346, 6213.

    Article  Google Scholar 

  • Toljander, J. F., Eberhardt, U., Toljander, Y. K., Paul, L. R., & Taylor, A. F. S. (2006). Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist, 170, 873–884.

    Article  CAS  PubMed  Google Scholar 

  • Uggla, E., Larsson, P.E., & Westling, O. (2003). Markkemi i kalkad skog. Lägesrapport 10 år efter kalkning. Årsrapport 2002. Effektoppföljning av Skogsstyrelsens program för åtgärder mot markförsurning. IVL rapport B 1536.

    Google Scholar 

  • Visser, S. (1995). Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist, 129, 389–401.

    Article  Google Scholar 

  • Wallander, H. (2000). Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant and Soil, 218, 249–256.

    Article  CAS  Google Scholar 

  • Wästerlund, I. (1982). Försvinner tallens mykorrhizasvamper vid gödsling? Botanisk Tidskrift, 76, 411–417.

    Google Scholar 

  • Wiklund, K., Nilsson, L. O., & Jacobsen, S. (1995). Effect of irrigation, fertilization, and artificial drought on basidioma production in a Norway spruce stand. Canadian Journal of Botany, 73, 200–208.

    Article  Google Scholar 

  • Zimmermann, S., & Frey, B. (2002). Soil respiration and microbial properties in an acid forest soil: Effects of wood ash. Soil Biology and Biochemistry, 34, 1727–1737.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Swedish Forest Agency, (grant no 91/06 4.43/HK) and by the “Center for Bioenergy Recycling- ASHBACK” project, funded by the Danish Council for Strategic Research (grant no 0603-00587B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Kjøller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kjøller, R., Cruz-Paredes, C., Clemmensen, K.E. (2017). Ectomycorrhizal Fungal Responses to Forest Liming and Wood Ash Addition: Review and Meta-analysis. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_14

Download citation

Publish with us

Policies and ethics