Skip to main content

An Effective Sampling Strategy for Ensemble Learning with Imbalanced Data

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Included in the following conference series:

Abstract

Classification of imbalanced datasets is one of the challenges in machine learning and data mining domains. The traditional classifiers still need to handle with minority instances. In this paper, we propose an effective method which applies sampling method based on ensemble learning. It uses Adaboost-SVM based on spectral clustering to boost the performance. This method also uses over-sampling and under-sampling methods based on the misclassified instances got by ensemble learning. Compared with the preview algorithms, the experiment results show that the proposed method is effective in dealing with imbalanced data in binary classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. J. Acm SIGKDD Explor. Newslett. 6, 1–6 (2004)

    Article  Google Scholar 

  2. Gao, J.W., Liang, J.Y.: Research and advancement of classification method of imbalanced data sets. J. Comput. Sci. 35, 10–13 (2008)

    Google Scholar 

  3. Tahir, M.A., Kittler, J., Yan, F.: Inverse random under sampling for class imbalance problem and its application to multi-label classification. J. Pattern Recogn. 45, 3738–3750 (2012)

    Article  Google Scholar 

  4. Chawla, N.V., Cieslak, D.A., Hall, L.O.: Automatically countering imbalance and its empirical relationship to cost. J. Data Mining Knowl. Discov. 17, 225–252 (2008)

    Article  MathSciNet  Google Scholar 

  5. Sun, Z., Song, Q., Zhu, X.: A novel ensemble method for classifying imbalanced data. J. Pattern Recogn. 48, 1623–1637 (2015)

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    MATH  Google Scholar 

  7. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: a new over-sampling method in imbalanced data sets learning. J. Lect. Notes Comput. Sci. 3644, 878–887 (2005)

    Article  Google Scholar 

  8. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-smote: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. Adv. Knowl. Discov. Data Mining 5476, 475–482 (2009)

    Article  Google Scholar 

  9. Fan, W., Stolfo, S.J, Zhang, J.: AdaCost: misclassification cost-sensitive boosting. In: Sixteenth International Conference on Machine Learning, pp. 97–105 . Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  10. Lertampaiporn, S., Thammarongtham, C., Nukoolkit, C.: Heterogeneous ensemble approach with discriminative features and modified-SMOTEbagging for pre-miRNA classification. J. Nucleic Acids Res. 41, e21 (2013)

    Article  Google Scholar 

  11. Chawla, N.V., Lazarevic, A., Hall, L.O.: Smoteboost: improving prediction of the minority class in boosting. J. Lect. Notes Comput. Sci. 2838, 107–119 (2003)

    Article  Google Scholar 

  12. Seiffert, C., Khoshgoftaar, T.M., Hulse, J.V.: Rusboost: a hybrid approach to alleviating class imbalance. J IEEE Trans. Syst. Man Cybern. 40, 185–197 (2010)

    Article  Google Scholar 

  13. Wang, C., Hongye, S.U., Yu, Q.U.: Imbalanced data sets classification method based on over-sampling technique. J. Comput. Eng. Appl. 47, 139–143 (2011)

    Google Scholar 

  14. Li, X.F., Li, J., Dong, Y.F.: A new learning algorithm for imbalanced data—pcboost. J. Chinese J. Comput. 2, 202–209 (2012)

    Article  MathSciNet  Google Scholar 

  15. Sobhani, P., Viktor, H., Matwin, S.: Learning from imbalanced data using ensemble methods and cluster-based undersampling. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2014. LNCS, vol. 8983, pp. 69–83. Springer, Cham (2015). doi:10.1007/978-3-319-17876-9_5

    Google Scholar 

  16. Sun, Z., Song, Q., Zhu, X.: Using coding-based ensemble learning to improve software defect prediction. J. IEEE Trans. Syst. Man Cybern. Part C 42, 1806–1817 (2012)

    Article  Google Scholar 

  17. Schapire, R.E.: The strength of weak learnability. J. Mach. Learn. 5, 197–227 (1990)

    Google Scholar 

  18. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1999)

    Article  MATH  Google Scholar 

  19. Li, X., Wang, L., Sung, E.: Adaboost with SVM-based component classifiers. J. Eng. Appl. Artif. Intell. 21, 785–795 (2008)

    Article  Google Scholar 

  20. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. J. Pattern Recogn. 30, 1145–1159 (1997)

    Article  Google Scholar 

  21. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. J. IEEE Trans. Knowl. Data Eng. 17, 299–310 (2005)

    Article  Google Scholar 

  22. Luxburg, U.V., Belkin, M., Bousquet, O.: Consistency of spectral clustering. J. Ann. Stat. 36, 555–586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China (61273225, 61273303, 61373109), the Program for Outstanding Young Science and Technology Innovation Teams in Higher Education Institutions of Hubei Province (No. T201202), and the Program of Wuhan Subject Chief Scientist (201150530152), as well as National “Twelfth Five-Year” Plan for Science & Technology Support (2012BAC22B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, C., Zhang, X. (2017). An Effective Sampling Strategy for Ensemble Learning with Imbalanced Data. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics