Skip to main content

Combination of EEG Data Time and Frequency Representations in Deep Networks for Sleep Stage Classification

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

Abstract

Almost all of the studies in the literature of sleep stage classification are based on traditional statistical learning techniques from a set of extracted features, which need a relative amount of time and effort. Deep learning offers approaches able to automatically extract patterns and abstractions from different types of data (images, sound, biomedical signals, etc.) to perform classification. However, the application of these techniques in the automatic sleep stage scoring field is less widespread to date. This paper proposes a new approach based on a multi-state deep learning neural network architecture, which we named Asymmetrical Multi-State Neural Network. This new network is able to merge two different neural networks, based on two different architectures receiving different input data: single-channel EEG raw signal in time and the respective spectrum. The proposed Asymmetrical Multi-State Neural Network shows to enhance the separated networks’ performance for the given problem on a complete well-known sleep database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Public Health Service, U.S. Government Printing Office, Washington, D.C. (1968)

    Google Scholar 

  2. American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification (2007)

    Google Scholar 

  3. Norman, R., Pal, I., Stewart, C., Walsleben, J., Rappaport, D.: Interobserver agreement among sleep scorers from different centers in a large dataset. Sleep 23, 901–908 (2000)

    Article  Google Scholar 

  4. Kerkeni, N., Alexandre, F., Bedoui, M.H., Bougrain, L., Dogui, M.: Automatic classification of sleep stages on a EEG signal by artificial neural networks. In: 5th WSEAS International Conference on SIGNAL, SPEECH and IMAGE, Wisconsin, USA, pp. 1–13 (2005)

    Google Scholar 

  5. Herrera, L.J., Fernandes, C.M., Mora, A., Migotina, D., Largo, R., Guillén, A., Rosa, A.: Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification. Int. J. Neural Syst. 23(3), 1350012 (2013)

    Article  Google Scholar 

  6. Längkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature learning. Adv. Artif. Neu. Sys. 5, 5 (2012)

    Google Scholar 

  7. Manzano, M., Guillén, A., Rojas, I., Herrera, L.J.: Deep learning using EEG data in time and frequency domains for sleep stage classification. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 132–141. Springer, Cham (2017). doi:10.1007/978-3-319-59153-7_12

    Chapter  Google Scholar 

  8. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220, 13 June 2000. doi:10.1161/01.CIR.101.23.e215. Circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218

  9. Tsinalis, O., Matthews, P.M., Guo, Y., Zafeiriou, S.: Automatic sleep stage scoring with single-channel EEG using convolutional neural networks. Biomed. Eng./Biomed. Tech. arXiv:1610.01683 [stat.ML] (2016)

  10. Zhang, J., Wu, Y., Bai, J., Chen, F.: Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Trans. Inst. Measur. Control 38(4), 435–451 (2015)

    Article  Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  12. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  13. Reddy, A.G., Narava, S.: Artifact removal from eeg signals. Int. J. Comput. Appl. 77(13), 17–19 (2013)

    Google Scholar 

  14. Palaz, D., Magimai-Doss, M., Collobert, R.: Analysis of cnn-based speech recognition system using raw speech as input. In: Proceedings of Interspeech, number Idiap-RR-23-2015, pp. 11–15 (2015)

    Google Scholar 

  15. Yang, J.B., Nguyen, M.N., San, P.P., Li, X.L., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 3995–4001, AAAI Press (2015)

    Google Scholar 

  16. Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid nn-hmm model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4277–4280 (2012)

    Google Scholar 

  17. Tóth, L.: Combining time and frequency-domain convolution in convolutional neural network-based phone recognition. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 190–194 (2014)

    Google Scholar 

  18. Abdel-Hamid, D.Y.O., Deng, L.: Exploring convolutional neural network structures and optimization techniques for speech recognition. In: Interspeech (2013)

    Google Scholar 

  19. Shufni, S. A., Mashor, M.Y.: Ecg signals classification based on discrete wavelet transform, time domain and frequency domain features. In: 2nd International Conference on Biomedical Engineering (ICoBE), pp. 1–6 (2015)

    Google Scholar 

  20. Cecotti, H.: A time–frequency convolutional neural network for the offline classification of steady-state visual evoked potential responses. Pattern Recogn. Lett. 32(8), 1145–1153 (2011)

    Article  Google Scholar 

  21. Tuncer, E., Bolat E.D.: Eeg signal based sleep stage classification using discrete wavelet transform. In: International Conference on Chemistry, Biomedical and Environment Engineering (2014)

    Google Scholar 

  22. Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional networks. In: The 2011 International Joint Conference on Neural Networks, pp. 2809–2813 (2011)

    Google Scholar 

  23. Bertasius, G., Shi, J., Torresani, L.: Deepedge: a multi-scale bifurcated deep network for top-down contour detection. CoRR, abs/1412.1123 (2014)

    Google Scholar 

  24. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, Gu., Hwang, S., Yao, B, Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Cham (2014). doi:10.1007/978-3-319-08010-9_33

    Google Scholar 

  25. Song, Y., McLoughlin, I.V., Dai, L.: Deep bottleneck feature for image classification. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, NY, USA, pp. 491–494 (2015)

    Google Scholar 

  26. Bresler, M., Sheffy, K., Pillar, G., Preiszler, M., Herscovici, S.: Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry. Physiol. Meas. 29(5), 571 (2008)

    Article  Google Scholar 

  27. Tsinalis, O., Matthews, P.M., Guo, Y.: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. 44(5), 1587–1597 (2016)

    Article  Google Scholar 

  28. The sleep-edf database [expanded]. https://www.physionet.org/physiobank/database/sleep-edfx/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Javier Herrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Manzano, M., Guillén, A., Rojas, I., Herrera, L.J. (2017). Combination of EEG Data Time and Frequency Representations in Deep Networks for Sleep Stage Classification. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics