Skip to main content

The Role of Geographic Information Science & Technology in Disaster Management

  • Chapter
  • First Online:
Handbook of Disaster Research

Part of the book series: Handbooks of Sociology and Social Research ((HSSR))

Abstract

The proliferation of geographic information science & technology (GIS&T) throughout disaster/hazard research and practice enables and facilitates placed-based approaches for disaster risk reduction. Geographic information systems (GIS), one type of GIS&T geo-technology, is commonly applied in the hazards/disaster context. Rapidly evolving technologies now provide a platform to engage in community-based and geo-enabled mobile technologies have rapidly expanded the potential for widespread geographic problem-solving and decision-making. This chapter focuses on GIS&T potential for disaster spatial (geographic) decision support systems (DM-SDSS), highlighting the ways these technologies can integrate physical and social science approaches to support disaster risk reduction. The first part of the chapter provides a brief background of GIS&T and the basics of a DM-SDSS. This is followed by examples of current GIS applications in disaster management, a discussion of challenges and opportunities, and suggested directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla, R., & Li, J. (2010). Towards effective application of geospatial technologies for disaster management. International Journal of Applied Earth Observation and Geoinformation, 12(6), 405–407.

    Article  Google Scholar 

  • Andrienko, G., Andrienko, N., & Jankowski, P. (2003). Building spatial decision support tools for individuals and groups. Journal of Decision Systems, 12(2), 193–208.

    Article  Google Scholar 

  • Aubrecht, C., Fuchs, S., & Neuhold, C. (2013). Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205–1216.

    Article  Google Scholar 

  • Bangladesh Water Development Board (BWDB). (2016). Bangladesh Flood Forecasting and Warning Centre. http://www.ffwc.gov.bd/. Accessed August 15, 2016.

  • Breunig, M., & Zlatanova, S. (2011). 3D geo-database research: Retrospective and future directions. Computers & Geosciences, 37(7), 791–803.

    Article  Google Scholar 

  • Bui, T. X., & Sankaran, S. R. (2001). Design considerations for a virtual information center for humanitarian assistance/disaster relief using workflow modeling. Decision Support Systems Archive, 31(2), 165–179.

    Article  Google Scholar 

  • Burton, I., Kates, R. W., & White, G. F. (1993). The environment as hazard (2nd ed.). New York, NY, USA: Guilford Press.

    Google Scholar 

  • California Department of Conservation, California Geological Survey (CGS). (2016). Seismic Hazard Zonation Program. http://www.conservation.ca.gov/cgs/shzp. Accessed August 15, 2016.

  • California Office of Emergency Services (Cal OES). (2016). MyHazards. http://myhazards.caloes.ca.gov/. Accessed August 15, 2016.

  • Camponovo, M. E., & Freundschuh, S. M. (2014). Assessing uncertainty in VGI for emergency response. Cartography and Geographic Information Science, 41(5), 440–455.

    Article  Google Scholar 

  • Centre for Research on the Epidemiology of Disasters (CRED). (2016). EM-DAT, The International Disaster Database. http://www.emdat.be/database. Accessed October 1, 2016.

  • Cova, T. J. (2014). Evacuation planning. In M. Garrett (Ed.), Encyclopedia of transportation. Thousand Oaks, CA, USA: SAGE Publications Inc.

    Google Scholar 

  • Cova, T. J., Theobald, D. M., Norman, J., & Siebeneck, L. K. (2013). Mapping wildfire evacuation vulnerability in the western US: The limits of infrastructure. GeoJournal, 78(2), 273–285.

    Article  Google Scholar 

  • Curry, M. R. (1997). The digital individual and the private realm. Annals of the Association of American Geographers, 87(4), 681–699.

    Article  Google Scholar 

  • Cutter, S. L. (1996). Vulnerability to environmental hazards. Progress in Human Geography, 20, 529–539.

    Article  Google Scholar 

  • Cutter, S. L. (2003). GI Science, disasters, and emergency management. Transactions in GIS, 7(4), 439–445.

    Article  Google Scholar 

  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., et al. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18, 598–606.

    Article  Google Scholar 

  • Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. PNAS, 105(7), 2301–2306.

    Article  Google Scholar 

  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.

    Article  Google Scholar 

  • De Silva, F. (2001). Providing spatial decision support for evacuation planning: A challenge in integrating technologies. Disaster Prevention and Management: An International Journal, 10, 11–20.

    Article  Google Scholar 

  • De Silva, F., Pidd, M., & Eglese, R. (1993). Spatial decision support systems for emergency planning: An operational research/geographical information systems approach to evacuation planning. In Proceedings of the 1993 Simulation Multiconference on the International Emergency Management and Engineering Conference (pp. 130–133). San Diego: The Society for Computer Simulation.

    Google Scholar 

  • Densham, P. (1991). Spatial decision support systems. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographical information systems: Principles and applications (Vol. 1, pp. 403–412). Harlow, U.K: Longman.

    Google Scholar 

  • DiBiase, D., DeMers, M., Johnson, A., Kemp, K., Luck, A. T., Plewe, B., et al. (Eds). (2006). Geographic information science and technology body of knowledge (1st ed.). Washington D.C., USA: Association of American Geographers (AAG) and the University Consortium for Geographic Information Science (UCGIS).

    Google Scholar 

  • Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3), 571–590.

    Article  Google Scholar 

  • Elwood, S., & Leitner, H. (1998). GIS and community-based planning: Exploring the diversity of neighborhood perspectives and needs. Cartography & Geographic Information Systems, 25(2), 77–88.

    Article  Google Scholar 

  • Federal Emergency Management Agency (FEMA). (2016a). National Flood Insurance Program. https://www.fema.gov/national-flood-insurance-program-flood-hazard-mapping. Accessed August 15, 2016.

  • Federal Emergency Management Agency (FEMA). (2016b). Hazus-MH. https://www.fema.gov/hazus. Accessed August 15, 2016.

  • Flanagin, A. J., & Metzger, M. J. (2008). The credibility of volunteered geographic information. GeoJournal, 72, 137–148.

    Article  Google Scholar 

  • Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16, 253–267.

    Article  Google Scholar 

  • Fordham, M., Lovekamp, W. E., Thomas, D. S. K., & Phillips, B. D. (2013). Understanding social vulnerability. In D. S. K. Thomas, B. D. Phillips, A. Fothergill, & W. E. Lovekamp (Eds.), Social vulnerability to disasters (pp. 1–29). Boca Raton, FL, USA: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Global Disaster Alert and Coordination System (GDACS). (2016). Event-based data and information. http://portal.gdacs.org/data/. Accessed August 15, 2016.

  • Goodchild, M. F. (2006). GIS and disasters: Planning for catastrophe. Computers, Environment and Urban Systems, 30(3), 227–229.

    Article  Google Scholar 

  • Goodchild, M. F., & Glennon, J. A. (2010). Crowdsourcing geographic information for disaster response: A research frontier. International Journal of the Digital Earth, 3(3), 231–241.

    Article  Google Scholar 

  • Haworth, B. (2016). Emergency management perspectives on volunteers geographic information: Opportunities, challenges and change. Computers, Environment and Urban Systems, 57, 189–198.

    Article  Google Scholar 

  • Haworth, B., & Bruce, E. (2015). A review of volunteered geographic information for disaster management. Geography Compass, 9(5), 237–250.

    Article  Google Scholar 

  • Hodgson, M. E., & Cutter, S. L. (2001). Mapping and the spatial analysis of hazardscapes. In S. L. Cutter (Ed.), American hazardscapes: The regionalization of environmental risks and hazards (pp. 37–60). Washington D.C., USA: Joseph Henry Press.

    Google Scholar 

  • Ivanov, A. Y., & Zatyagolva, V. V. (2008). A GIS approach to mapping oil spills in a marine environment. International Journal of Remote Sensing, 29, 6297–6313.

    Article  Google Scholar 

  • Jankowski, P. (2008). Spatial decision support systems. In K. Kemp (Ed.), Encyclopedia of geographic information science (pp. 287–290). Thousand Oaks, CA, USA: SAGE Publications Inc.

    Google Scholar 

  • Jankowski, P., & Nyerges, T. (2002). Introduction to spatial decision support systems. In C. Bauzer Medeiros (Ed.), Encyclopedia of life support systems (EOLSS), Theme 1.9—Advanced geographic information systems. Oxford, UK: UNESCO/Eolss Publishers.

    Google Scholar 

  • Johnston, W., Banerjee, N., Cothren, J., & Parkerson, J. P. (2014). Information rich GIS dissemination in disconnected environments. Transactions in GIS, 18(4), 555–573.

    Article  Google Scholar 

  • Keenan, P. B. (1998). Spatial decision support systems for vehicle routing. Decision Support Systems, 22(1), 64–71.

    Article  Google Scholar 

  • Keenan, P. B. (2006). Spatial decision support systems: A coming of age. Control and Cybernetics, 35(1), 9–27.

    Google Scholar 

  • Khan, F., Enriquez, M. F., & MacClune, K. (2015). Community-based disaster risk reduction and adaptation planning: Tools for prioritizing potential solutions. Global Disaster Preparedness Center (GDPC), Institute for Social and Environmental Transition (ISET), International Federation of Red Cross and Red Crescent Societies (IFRC).

    Google Scholar 

  • Leidig, M., & Teeuw, R. (2015a). Free software: A review, in the context of disaster management. International Journal of Applied Earth Observation and Geoinformation, 42, 49–56.

    Article  Google Scholar 

  • Leidig, M., & Teeuw, R. (2015b). Quantifying and mapping global data poverty. PLoS ONE, 10(11), e0143076.

    Article  Google Scholar 

  • Leifer, I., William, J., Lehr, W. J., Simecek-Beatty, D., Bradley, E., Clark, R., et al. (2012). State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon Oil Spill. Remote Sensing of the Environment, 124, 185–209.

    Article  Google Scholar 

  • Lindell, M. K., Bolton, P. A., Perry, R. W., Stoetzel, G. A., Martin, J. B., & Flynn, C. B. (1985). Planning concepts and decision criteria for sheltering and evacuation in a nuclear power plant emergency. National Environmental Studies Project, Atomic Industrial Forum, Inc.

    Google Scholar 

  • Lindell, M. K., & Prater, C. S. (2007). A hurricane evacuation management decision support system (EMDSS). Natural Hazards, 40(3), 627–634.

    Article  Google Scholar 

  • Liveuamap. (2016). Syria Conflict Crisis Map. http://syria.liveuamap.com/. Accessed September 15, 2016.

  • MacEachren, A. M. (2004). How maps work: Representation, visualization, and design. New York, NY, USA: The Guilford Press.

    Google Scholar 

  • Maskrey, A. (2011). Revisiting community-based disaster risk management. Environmental Hazards, 10(1), 42–52.

    Article  Google Scholar 

  • Mileti, D. S. (1999). Disasters by design: A reassessment of natural hazards in the United States. Washington D.C., USA: Joseph Henry Press.

    Google Scholar 

  • Mills, J. W., Curtis, A., Kennedy, B., Kennedy, S. W., & Edwards, J. D. (2010). Geospatial video for field data collection. Applied Geography, 30(4), 533–547.

    Article  Google Scholar 

  • Monmonier, M. (1997). Cartographies of danger: Mapping hazards in America. Chicago, IL, USA: University of Chicago Press.

    Book  Google Scholar 

  • Morrow, B. H. (1999). Identifying and mapping community vulnerability. Disasters, 23(1), 1–18.

    Article  Google Scholar 

  • NASA. (2016a). Earth Observatory. http://earthobservatory.nasa.gov/. Accessed August 15, 2016.

  • NASA. (2016b). SERVIR. http://www.nasa.gov/mission_pages/servir/index.html. Accessed August 15, 2016.

  • National Academies of Science (NAS), National Research Council, Committee on Planning for Catastrophe: A Blueprint for Improving Geospatial Data, Tools, and Infrastructure. (2007). Successful response starts with a map: Improving geospatial support for disaster management. Available at: http://www.nap.edu/catalog/11793.html. Accessed May 10, 2016.

  • National Institute of Standards and Technology (NIST). (2015). NIST big data interoperability framework: Volume 4, security and privacy. NIST Special Publication 1500–4. Available at: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-4.pdf. Accessed September 15, 2016.

  • National Oceanic and Atmospheric Administration (NOAA). (2016a). Satellite and Information Service. http://www.nesdis.noaa.gov/imagery_data.html. Accessed August 15, 2016.

  • National Oceanic and Atmospheric Administration (NOAA). (2016c). Environmental Response Management Application (ERMA). http://response.restoration.noaa.gov/maps-and-spatial-data/environmental-response-management-application-erma. Accessed August 15, 2016.

  • National Oceanic and Atmospheric Administration (NOAA). (2016d). Deepwater Horizon Trajectory Maps: Background. http://response.restoration.noaa.gov/deepwater-horizon-oil-spill. Accessed August 15, 2016.

  • National Oceanic and Atmospheric Administration (NOAA). (2016e). Tools. https://coast.noaa.gov/digitalcoast/tools/. Accessed August 15, 2016.

  • National Oceanic and Atmospheric Administration (NOAA), National Weather Service. (2016b). http://weather.gov/. Accessed August 15, 2016.

  • National Research Council (NRC), Board on Natural Disasters, Commission on Geosciences, Environment, and Resources. (1999). Reducing natural disasters through better information. Washington D.C., USA: National Academy Press.

    Google Scholar 

  • Nayak, S., & Zlatanova, S. (Eds.). (2008). Remote sensing and GIS technologies for monitoring and prediction of disasters. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Nyerges, T., & Jankowski, P. (2009). Urban and regional GIS: A decision support approach. New York, NY, USA: Guilford Press.

    Google Scholar 

  • Pacific Disaster Center (PDC). (2016). DisasterAWARE. http://atlas.pdc.org/atlas/. Accessed September 1, 2016.

  • Pearce, L. (2003). Disaster management and community planning, and public participation: How to achieve sustainable hazard mitigation. Natural Hazards, 28(2), 211–228.

    Article  Google Scholar 

  • Pourvakhshouri, S. Z., & Mansor, S. (2003). Decision support systems in oil spill cases (literature review). Disaster Prevention and Management: An International Journal, 12(3), 217–221.

    Article  Google Scholar 

  • PreventionWeb. (2016). http://www.preventionweb.net/english/ UNISDR. Accessed August 15, 2016.

  • Radke, J., Cova, T., Sheridan, M. F., Troy, A., Mu, L., & Johnson, R. (2000). Application challenges for geographic information science: Implications for research, education, and policy for emergency preparedness and response. URISA Journal, 12(2), 15–30.

    Google Scholar 

  • Resilience Alliance. (2016). http://www.resalliance.org. Accessed August 15, 2016.

  • Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J., & Guptill, S. C. (1995). Elements of cartography (6th ed.). Danvers, MA, USA: Wiley.

    Google Scholar 

  • Simonovic, S. P., & Ahmad, S. (2005). Computer-based model for flood evacuation emergency planning. Natural Hazards, 34, 25–51.

    Article  Google Scholar 

  • Sui, D., & Goodchild, M. (2011). The convergence of GIS and social media: Challenges for GIScience. International Journal of Geographical Information Science, 25(11), 1737–1748.

    Article  Google Scholar 

  • Sui, D., & Goodchild, M. (Eds.). (2013). Crowdsourcing geographic knowledge: Volunteered geographic information (VGI) in theory and practice. New York, NY, USA: Springer.

    Google Scholar 

  • Talen, E. (1999). Constructing neighborhoods from the bottom up: the case for resident-generated GIS. Environment and Planning B, 26, 533–554.

    Article  Google Scholar 

  • Tate, E., Burton, C. G., Berry, M., Emrich, C. T., & Cutter, S. L. (2011). Integrated hazards mapping tool. Transactions in GIS, 15(5), 689–706.

    Article  Google Scholar 

  • Teeuw, R. M., Leidig, M., Saunders, C., & Morris, N. (2013). Free or low-cost geoinformatics for disaster management: Uses and availability issues. Environmental Hazards-Human and Policy Dimensions, 12(2), 112–131.

    Google Scholar 

  • Tobin, G. A., & Montz, B. E. (1997). Natural hazards: Explanation and integration. New York, NY, USA: Guilford Press.

    Google Scholar 

  • Tomaszewski, B., Judex, M., Szarzynski, J., Radestock, C., & Wirkus, L. (2015). Geographic information systems for disaster response: A review. Journal of Homeland Security and Emergency Management, 12(3), 571–602.

    Article  Google Scholar 

  • United States. President’s National Security Telecommunications Advisory Committee. (NSTAC). (2016?). NSTAC Report to the President on Big Data Analytics. Draft. https://www.hsdl.org/?abstract&did=792598. Accessed September 15, 2016.

  • Uran, O., & Janssen, R. (2003). What are spatial decision support systems not used? Some experiences from the Netherlands. Computers, Environment and Urban Systems, 27(5), 511–526.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (EPA). (2016). CAMEO (Computer-Aided Management of Emergency Operations). https://www.epa.gov/cameo. Accessed August 15, 2016.

  • U.S. Geological Survey (USGS). (2016a). Global Seismographic Network. https://earthquake.usgs.gov/monitoring/gsn/. Accessed August 15, 2016.

  • U.S. Geological Survey (USGS). (2016b). National Streamflow Information Program (NSIP). http://water.usgs.gov/nsip/. Accessed August 15, 2016.

  • U.S. Geological Survey (USGS). (2016c). Hazard Maps and Site-Specific Data. https://earthquake.usgs.gov/hazards/hazmaps/. Accessed August 15, 2016.

  • U.S. Geological Survey (USGS). (2016d). Natural Hazards. https://www2.usgs.gov/natural_hazards/. Accessed August 15, 2016.

  • Vafai, F., Hadipour, V., & Hadipour, A. (2013). Determination of shoreline sensitivity to oil spills by use of GIS and fuzzy model. Case study—The coastal areas of Caspian Sea in north of Iran. Ocean and Coastal Management, 71, 123–130.

    Article  Google Scholar 

  • White, G. F. (Ed.). (1974). Natural hazards: Local, national, global. New York, NY, USA: Oxford University Press.

    Google Scholar 

  • Wilmot, C. G., & Mei, B. (2004). Comparison of alternative trip generation models for hurricane evacuation. Natural Hazards Review, 5(4), 170–178.

    Article  Google Scholar 

  • World Health Organization (WHO), Regional Office for Europe. (2016). E-atlas for Disaster Risk. http://data.euro.who.int/e-atlas/europe/foreword.html#. Accessed September 12, 2016.

  • Zerger, A., & Smith, D. I. (2003). Impediments to using GIS for real-time disaster decision support. Computers, Environment and Urban Systems, 27(2), 123–141.

    Article  Google Scholar 

  • Zlatanova, S., van Oosterom, P., & Verbree, E. (2006). Geo-information support in management of urban disasters. Open House International, 31(1), 62–69.

    Google Scholar 

  • Zook, M., Graham, M., Shelton, T., & Gorman, S. (2010). Volunteered geographic information and crowdsourcing disaster relief: A case study of the Haitian Earthquake. World Medical & Health Policy, 2(2), 7–33.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges and thanks Kivanç Ertugay and Serkan Kemeç for their contributions to the chapter that appeared in the first edition of this book. This chapter represents the writing of the present authors and does not necessarily reflect those of previous authors. Thanks is also extended to Rachel Stevenson, who provided comments and insights, particularly on the open source and volunteered sections of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah S.K. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, D.S. (2018). The Role of Geographic Information Science & Technology in Disaster Management. In: Rodríguez, H., Donner, W., Trainor, J. (eds) Handbook of Disaster Research. Handbooks of Sociology and Social Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63254-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63254-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63253-7

  • Online ISBN: 978-3-319-63254-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics