Skip to main content

Turbulence Modification in a Pipe Flow Due to Superhydrophobic Walls

  • Conference paper
  • First Online:
Direct and Large-Eddy Simulation X

Part of the book series: ERCOFTAC Series ((ERCO,volume 24))

  • 2037 Accesses

Abstract

Superhydrophobic surface features could be used to obtain significant drag reduction in turbulent confined flows (Min and Kim, Phys Fluids 16(7) L55, 2004) [1], (Fukagata et al., Phys Fluids 18, 051703 2006) [2], (Aljallis et al., Phys Fluid 25, 025103, 2013) [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Min, T., Kim, J.: Effects of hydrophobic surface on skin-friction drag. Phys. Fluids. 16(7), L55 (2004)

    Article  MATH  Google Scholar 

  2. Fukagata, K., Kasagi, N., Koumoutsakos, P.: A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703 (2006)

    Article  Google Scholar 

  3. Aljallis, E., Sarshar, M.A., Datla, R., Sikka, V., Jones, A., Choi, C.H.: Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluid. 25, 025103 (2013)

    Article  Google Scholar 

  4. Li, X.M., Reinhoudt, D.: Crego-Calama. M.: What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36(8), 1350–1368 (2007)

    Article  Google Scholar 

  5. Lafuma, A., Qur, D.: Superhydrophobic states, Nature Materials, 2:457–460

    Google Scholar 

  6. Giacomello, A., Meloni, S., Chinappi, M., Casciola, C.M.: Cassie Baxter and Wenzel states on a nanostructured surface: Phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations, Langmuir. 28:10764–10772

    Google Scholar 

  7. Park, H., Kim, J.: A numerical study of the effect of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25, 110815 (2013)

    Article  Google Scholar 

  8. Turbulent flow over superhydrophobic surfaces with streamwise grooves: T\(\ddot{u}\)rk, S.T., Daschiel, G. Stroh, A., Hasegawa, Y., Frohnapfel, B. J. Fluid Mech. 747, 186–217 (2014)

    Article  Google Scholar 

  9. Daniello, R.J., Waterhouse, N.E., Rothstein, J.P.: Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids 21, 085103 (2009)

    Article  MATH  Google Scholar 

  10. Henoch, C., Krupenkin, T.N., Kolodner, P., Taylor, J.A., Hodes, M.S., Lyons, A.M., Peguero, C., Breuer, K.: Turbulent drag reduction using superhydrophobic surfaces. In: 3rd AIAA Flow Control Conference, 2006–3192 (2006)

    Google Scholar 

  11. Picano, F., Sardina, G., Casciola, C.M.: Spatial development of particle-laden turbulent pipe flow. Phys. Fluid (1994-present) 21(9) (2009). 093305

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement n. [339446].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Costantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Costantini, R., Battista, F., Casciola, C.M. (2018). Turbulence Modification in a Pipe Flow Due to Superhydrophobic Walls. In: Grigoriadis, D., Geurts, B., Kuerten, H., Fröhlich, J., Armenio, V. (eds) Direct and Large-Eddy Simulation X. ERCOFTAC Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-63212-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63212-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63211-7

  • Online ISBN: 978-3-319-63212-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics