Skip to main content

Medical Devices for Radioembolization

  • Chapter
  • First Online:
Clinical Applications of Nuclear Medicine Targeted Therapy

Abstract

Microspheres of the proper size injected into the hepatic artery lodge themselves preferentially in and around tumours as a result of both the increased vascularity of tumours and the fact that blood from the hepatic artery flows preferentially to malignancies. Thus, radioembolization with microspheres labelled with β-emitter radionuclides has become a well-established and powerful tool for the treatment of liver malignancies, since it adds to the embolization effect the deposition of lethal doses of radiation to the tumour cells.

Two commercially available medical devices of this type labelled with yttrium-90 (90Y) are presently authorized for human use. Although both are reportedly effective, they have key dissimilarities strictly related to their chemical form and manufacturing method. The aim of this chapter is to examine these factors in terms of pro and cons and how they can affect the use and biodistribution of radiolabelled microspheres.

Last, the need to have good in vivo imaging during pretreatment procedure, as well as during and/or after administration of the dose, has encouraged to explore alternative radionuclides to 90Y able to fulfil this requirement, such as holmium-166 (166Ho) and rhenium-186 and rhenium-188 (186Re/188Re). These, together with the development of different microsphere matrixes, will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    As it is often the case with products covered by patent, detailed and clear information is not always available. Where this was missing, second-hand data available from literature was used.

  2. 2.

    Microsphere distribution after treatment commonly exploits the bremsstrahlung radiation produced by the decelerating β. Unfortunately, 90Y-bremsstrahlung post-therapy imaging is not optimal for precise evaluation and dose calculation of radioactive sphere deposition within tumour lesion. However, since 90Y decay is accompanied also by a 0.003% positron emission, the recent development of highly sensitive tomographs has made feasible the imaging also by positron emission tomography (PET).

  3. 3.

    A support to this opinion is the fact that, as pointed out later in the text, the use of saline should be avoided since it could release 90Y by a cation-exchange process, something that should be irrelevant in case of yttrium phosphate.

References

  1. Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol. 1954;30(5):969–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Van de Wiele C, Maes A, Brugman E, D’asseler Y, De Spiegeleer B, Mees G, Stellamans K. SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging. 2012;39:1646–55.

    Google Scholar 

  3. Laurent A. Microspheres and nonspherical particles for embolization. Tech Vasc Interv Rad. 2007;10:248–56.

    Article  CAS  Google Scholar 

  4. Nijsen JFW, Zonnenberg BA, Woittiez JRW, Rook DW, Swildens-van Woudenberg IA, van Rijk PP, van het Schip AD. Holmium-166 poly lactic microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704.

    Article  CAS  PubMed  Google Scholar 

  5. Cremonesi M, Ferrari M, Bartolomei M, Orsi F, Bonomo G, Aricò D, et al. Radioembolization with 90Y-microspheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35(11):2088–96.

    Article  CAS  PubMed  Google Scholar 

  6. Wunderlich G, Schiller E, Bergmann R, Pietzsch HJ. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM). Nucl Med Biol. 2010;37:861–7.

    Article  CAS  PubMed  Google Scholar 

  7. Burton MA, Gray BN, Klemp PF, Kelleher DK, Hardy N. Selective internal radiation therapy: distribution of radiation in the liver. Eur J Cancer Clin Oncol. 1989;25(10):1487–91.

    Article  CAS  PubMed  Google Scholar 

  8. Lau WY, Ho S, Leung TWT, Chan M, Ho R, Johnson PJ, Li AKC. Selective internal radiation therapy for nonresectable hepatocellular carcinoma with intraarterial infusion of 90Yttrium microspheres. Int Radiat Oncol Biol Phys. 1998;40(3):583–92.

    Article  CAS  Google Scholar 

  9. Van de Maat GH, Seevinck PR, Elschot M, Smits MLJ, de Leeuw H, van het Schip AD, et al. MRI-based biodistribution assessment of holmium-166 poly (L-lactic acid) microspheres after radioembolization. Eur Radiol. 2013;23:827–35.

    Google Scholar 

  10. Aspasio RD, Borges R, Marchi J. Biocompatible glasses for cancer treatment. In: Marchi J, editor. Biocompatible glasses: from bone regeneration to cancer treatment. Cham: Springer; 2016. p. 267–84.

    Google Scholar 

  11. Erbe EM, Day DE. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J Biomed Mater Res. 1993;27(10):1301–8.

    Google Scholar 

  12. Metyko J, Williford JM, Erwin W, Poston J, Jimenez S. Long-lived impurities of 90Y-labeled microspheres, Thera Sphere and SIR-Spheres, and the impact on patients dose and waste management. Radiat Saf J. 2012;103(2):S204–8.

    Google Scholar 

  13. Day DE, Ehrhardt GJ. Glass microspheres. United States Patent number 4789501. 1988.

    Google Scholar 

  14. Morgan B, Kennedy AS, Lewington V, Jones B, Sharma RA. Intra-arterial brachytherapy of hepatic malignancies: watch the flow. Nat Rev Clin Oncol. 2011;8:115–20.

    Article  CAS  PubMed  Google Scholar 

  15. Basciano CA, Kleinstreuer C, Kennedy AS. Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J Nucl Med Radiat Ther. 2011. https://doi.org/10.4172/2155-9619.1000112.

  16. Wagner HN, Rhodes BA, Sasaki Y, Ryan JP. Studies of the circulation with radioactive microspheres. Investig Radiol. 1969;4(6):374–86.

    Article  Google Scholar 

  17. Caine M, McCafferty MS, McGhee S, Garcia P, Mullett WN, Zhang X, et al. Impact of Yttrium-90 microspheres density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J Vasc Interv Radiol. 2017;28:260–8.

    Google Scholar 

  18. Ibrahim S, Lewandowski RJ, Ryu RK, Sato KT, Gates VL, Mulcahy MF, et al. Radiographic response to yttrium-90 radioembolization in anterior versus posterior liver segments. Cardiovasc Intervent Radiol. 2008;31:1124–32.

    Article  PubMed  Google Scholar 

  19. Salem R, Mazzaferro V, Sangro B. Yttrium-90 radioembolization for the treatment of hepatocellular carcinoma: biological lesson, current challenges, and clinical perspectives. Hepatology. 2013;58(6):2188–97.

    Google Scholar 

  20. Gray BN. Polymer based radionuclide containing particulate material. Patent application WO 02/34300 A1. 2002.

    Google Scholar 

  21. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guidelines for the treatment of liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38(7):1393–406.

    Article  CAS  PubMed  Google Scholar 

  22. Lambert B, Mertens J, Ravier M, Blanken T, Defreyne L, Van Vlierberghr H, et al. Urinary excretion of Yttrium-90 following intra-arterial microspheres treatment for liver tumours. J Nucl Med. 2011;52(Supplement 1):1744.

    Google Scholar 

  23. Nelson K, Vause PE, Koropova P. Post-mortem considerations of yttrium-90 (90Y) microspheres therapy procedures. Health Phys. 2008;95(5):S156–61.

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy AS, McNeille P, Dezarn WA, Nutting C, Sangro B, Wertman WA, et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1494–500.

    Article  CAS  PubMed  Google Scholar 

  25. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005;293(13):1653–62.

    Article  CAS  PubMed  Google Scholar 

  26. Koran ME, Stewart S, Baker JC, Lipnik AJ, Banovac F, Omary RA, Brown DB. Five percent dextrose maximizes dose delivery of yttrium-90 resin microspheres and reduces rates of premature stasis compared to sterile water. Biomed Rep. 2016;5:745–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Turner JH, Claringbold PG, Klemp PF, Cameron PJ, Martindale AA, Glancy RJ, et al. 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig. Nucl Med Commun. 1994;15(7):545–53.

    Article  CAS  PubMed  Google Scholar 

  28. Vente MA, Hobbelink MG, van Het Schip AD, Zonnnenberg BA, Nijsen JF. Radionuclide liver cancer therapies: from concept to current clinical status. Anticancer Agent Med Chem. 2007;7(4):441–59.

    Article  CAS  Google Scholar 

  29. Smits MLJ, Nijsen JFW, van der Bosch MAAJ, Lam MGEH, Vente MAD, Huijbregts JE, et al. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res. 2010;29:70. http://www.jeccr.com/content/29/1/70

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dale RG. Dose-rate effects in targeted radiotherapy. Phys Med Biol. 1996;41:1871–84.

    Article  CAS  PubMed  Google Scholar 

  31. Zielhuis SW, Nijsen JFW, de Roos R, Krijger GC, van Rijk PP, Hennink WE, van het Schip AD. Production of GMP-grade radioactive holmium loaded poly(L-lactic acid) microspheres for clinical application. Int J Pharm. 2006;311:69–74.

    Article  CAS  PubMed  Google Scholar 

  32. Zielhuis SW, Nijsen JFW, Krijger GC, van het Schip AD, Hennink WE. Holmium-loaded poly (L-lactic acid) microspheres: in vitro degradation study. Biomacromolecules. 2006;7(7):2217–23.

    Google Scholar 

  33. Yavari K, Yeganeh E, Abolghasemi H. Production and characterization of 166Ho polylactic acid microspheres. J Label Compd Radiopharm. 2016;59:24–9.

    Article  CAS  Google Scholar 

  34. Vente MAD, de Wit TC, van den Bosch MAAJ, Bult W, Seeninck PR, Zonnenberg BA, et al. Holmium-166 poly(l-lactic acid) microsphere radioembolization of the liver: technical aspects studied in a large animal model. Eur Radiol. 2010;20:862–9.

    Article  CAS  PubMed  Google Scholar 

  35. Prince JF. Holmium radioembolization: efficacy and safety. PhD thesis. 2016. ISBN 978–90–393-6489-5.

    Google Scholar 

  36. Smits MLJ, Nijsen JFW, van der Bosch MAAJ, Lam MGEH, Vente MAD, Mali WP, et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose escalation study. Lancet Oncol. 2012;13:1025–34.

    Article  CAS  PubMed  Google Scholar 

  37. Prince JF, van Rooij R, Bol GH, de Jong HWAM, van den Bosch MAAJ. Safety of a scout dose preceding hepatic radioembolization with 166Ho microspheres. J Nucl Med. 2015;56:817–23.

    Article  PubMed  Google Scholar 

  38. Elschot M, Nijsen JFW, Lam MGEH, Smits MLJ, Prince JF, Viergever MA, et al. 99mTc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166Ho-microspheres. Eur J Nucl Med Mol Imaging. 2014;41:1965–75.

    Google Scholar 

  39. Cosimelli M. The evolution of radioembolization. Lancet Oncol. 2012;13:965–6.

    Article  PubMed  Google Scholar 

  40. Hafeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD, et al. Hepatic tumor radioembolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys. 1999;44(1):189–99.

    Article  CAS  PubMed  Google Scholar 

  41. Hafeli UO, Roberts WK, Pauer GJ, Kraeft SK, Macklis RM. Stability of biodegradable radioactive rhenium (Re-186 and Re-188) microspheres after neutron-activation. Appl Radiat Isot. 2001;54:869–79.

    Article  CAS  PubMed  Google Scholar 

  42. Wunderlich G, Pinkert J, Andreeff M, Stintz M, Knapp FF, Kropp J, Franke WG. Preparation and biodistribution of rhenium-188 labeled albumin microspheres B20: a promising new agent for radiotherapy. Appl Radiat Isot. 2000;52:63–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wunderlich G, Drews A, Kotzerke J. A kit for labeling of [188Re]human serum albumin microspheres for therapeutic use in nuclear medicine. Appl Radiat Isot. 2005;62:915–8.

    Article  CAS  PubMed  Google Scholar 

  44. Nowicki ML, Cwikla JB, Sankowski AJ, Shcherbinin AJ, Grimes J, Celler A, et al. Initial study of radiological and clinical efficacy radioembolization using 188Re-human serum albumin (HSA) microspheres in patients with progressive, unresectable primary or secondary lung cancers. Med Sci Monit. 2014;20:1353–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bogni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bogni, A., Pascali, C. (2018). Medical Devices for Radioembolization. In: Bombardieri, E., Seregni, E., Evangelista, L., Chiesa, C., Chiti, A. (eds) Clinical Applications of Nuclear Medicine Targeted Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-63067-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63067-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63066-3

  • Online ISBN: 978-3-319-63067-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics