Skip to main content

Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

  • Chapter
  • First Online:
Modelling Pulsar Wind Nebulae

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 446))

Abstract

We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

Both authors contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other efficient methods exists as for instance the particle pusher developed by VayĀ (2008).

  2. 2.

    The total particle charge is conserved, but not necessarily the charge deposited on the grid.

  3. 3.

    For a spherical geometry, see HollandĀ (1983);Ā Cerutti etĀ al.Ā (2015,Ā 2016), and BelyaevĀ (2015).

  4. 4.

    Typically, pushing particles and depositing currents take 90% of the computing time (without communications), this is the reason why load-balancing is so critical in PIC.

  5. 5.

    In the limit Ī³ 0 ā‰« 1 of ultra-relativistic shocks, as appropriate for PWNe, the efficiency of the Fermi process does not depend on the shock Lorentz factor Ī³ 0 (Sironi and SpitkovskyĀ 2009,Ā 2011b;Ā Sironi etĀ al.Ā 2013).

  6. 6.

    The parameter Īµ B denotes the magnetization of the turbulence, Īµ B ā€‰=ā€‰Ī“B 2āˆ•8Ļ€Ī³ 0 Ļ 0 c 2, where Ī“B is the fluctuating magnetic field and Ļ 0 is the mass density of the pre-shock flow. This should not be confused with the magnetization Ļƒ = B 0 2āˆ•4Ļ€Ī³ 0 Ļ 0 c 2, which quantifies the strength of the pre-existing ordered upstream field B 0.

  7. 7.

    This scaling is shallower than the so-called (and commonly assumed) Bohm limit Ī³ max āˆ t, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer (see Fig.ā€‰11.6).

  8. 8.

    The wavelength Ī» of the striped wind equals cā€‰P, where P is the pulsar period.

  9. 9.

    Hard particle spectra are found to be a generic by-product of magnetic reconnection in the relativistic regime appropriate for pulsar winds (e.g.,Ā Sironi and SpitkovskyĀ 2014;Ā Guo etĀ al.Ā 2014;Ā Melzani etĀ al.Ā 2014;Ā Werner etĀ al.Ā 2016;Ā Sironi etĀ al.Ā 2015b,Ā 2016).

  10. 10.

    The reconnection rate is measured to be in the range v recāˆ•c āˆ¼ 0.ā€‰2 āˆ’ 0.ā€‰5, which increases with the magnetization and saturates at around 0.5 at high magnetization limit (Lyutikov etĀ al.Ā 2016).

References

  • Abdo, A.A., Ackermann, M., Ajello, M., Allafort, A., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Berenji, B., Blandford, R.D., Bloom, E.D., Bonamente, E., Borgland, A.W., Bouvier, A., Brandt, T.J., Bregeon, J., Brez, A., Brigida, M., Bruel, P., Buehler, R., Buson, S., Caliandro, G.A., Cameron, R.A., Cannon, A., Caraveo, P.A., Casandjian, J.M., Ƈelik, Ɩ., Charles, E., Chekhtman, A., Cheung, C.C., Chiang, J., Ciprini, S., Claus, R., Cohen-Tanugi, J., Costamante, L., Cutini, S., Dā€™Ammando, F., Dermer, C.D., de Angelis, A., de Luca, A., de Palma, F., Digel, S.W., do Couto e Silva, E., Drell, P.S., Drlica-Wagner, A., Dubois, R., Dumora, D., Favuzzi, C., Fegan, S.J., Ferrara, E.C., Focke, W.B., Fortin, P., Frailis, M., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Gehrels, N., Germani, S., Giglietto, N., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Grenier, I.A., Grondin, M.-H., Grove, J.E., Guiriec, S., Hadasch, D., Hanabata, Y., Harding, A.K., Hayashi, K., Hayashida, M., Hays, E., Horan, D., Itoh, R., JĆ³hannesson, G., Johnson, A.S., Johnson, T.J., Khangulyan, D., Kamae, T., Katagiri, H., Kataoka, J., Kerr, M., Knƶdlseder, J., Kuss, M., Lande, J., Latronico, L., Lee, S.-H., Lemoine-Goumard, M., Longo, F., Loparco, F., Lubrano, P., Madejski, G.M., Makeev, A., Marelli, M., Mazziotta, M.N., McEnery, J.E., Michelson, P.F., Mitthumsiri, W., Mizuno, T., Moiseev, A.A., Monte, C., Monzani, M.E., Morselli, A., Moskalenko, I.V., Murgia, S., Nakamori, T., Naumann-Godo, M., Nolan, P.L., Norris, J.P., Nuss, E., Ohsugi, T., Okumura, A., Omodei, N., Ormes, J.F., Ozaki, M., Paneque, D., Parent, D., Pelassa, V., Pepe, M., Pesce-Rollins, M., Pierbattista, M., Piron, F., Porter, T.A., RainĆ², S., Rando, R., Ray, P.S., Razzano, M., Reimer, A., Reimer, O., Reposeur, T., Ritz, S., Romani, R.W., Sadrozinski, H.F.-W., Sanchez, D., Parkinson, P.M.S., Scargle, J.D., Schalk, T.L., SgrĆ², C., Siskind, E.J., Smith, P.D., Spandre, G., Spinelli, P., Strickman, M.S., Suson, D.J., Takahashi, H., Takahashi, T., Tanaka, T., Thayer, J.B., Thompson, D.J., Tibaldo, L., Torres, D.F., Tosti, G., Tramacere, A., Troja, E., Uchiyama, Y., Vandenbroucke, J., Vasileiou, V., Vianello, G., Vitale, V., Wang, P., Wood, K.S., Yang, Z., Ziegler, M.: Gamma-ray flares from the Crab Nebula. Science 331, 739 (2011). doi:10.1126/science.1199705

    Google ScholarĀ 

  • Achterberg, A., Gallant, Y.A., Kirk, J.G., Guthmann, A.W.: Particle acceleration by ultrarelativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc. 328, 393ā€“408 (2001). doi:10.1046/j.1365-8711.2001.04851.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Amato, E., Arons, J.: Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton-electron-positron plasmas. Astrophys. J. 653, 325ā€“338 (2006). doi:10.1086/508050

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Arons, J.: Pulsar wind nebulae as cosmic pevatrons: a current sheetā€™s tale. Space Sci. Rev. 173, 341ā€“367 (2012). doi:10.1007/s11214-012-9885-1

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Belyaev, M.A.: PICsar: A 2.5D axisymmetric, relativistic, electromagnetic, particle in cell code with a radiation absorbing boundary. New Astron. 36, 37ā€“49 (2015). doi:10.1016/j.newast.2014.09.006

    Google ScholarĀ 

  • Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185ā€“200 (1994). doi:10.1006/jcph.1994.1159

    ArticleĀ  MATHĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  • Berenger, J.-P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363ā€“379 (1996). doi:10.1006/jcph.1996.0181

    ArticleĀ  MATHĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  • Bietenholz, M.F., Kassim, N., Frail, D.A., Perley, R.A., Erickson, W.C., Hajian, A.R.: The radio spectral index of the Crab Nebula. Astrophys. J. 490, 291 (1997). doi:10.1086/304853

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation, Taylor & Francis, New York (1991)

    BookĀ  Google ScholarĀ 

  • Bucciantini, N., Arons, J., Amato, E., Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381ā€“398 (2011). doi:10.1111/j.1365-2966.2010.17449.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Buehler, R., Blandford, R.: The surprising Crab pulsar and its Nebula: a review. Rep. Prog. Phys. 77(6), 066901 (2014). doi:10.1088/0034-4885/77/6/066901

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Buehler, R., Scargle, J.D., Blandford, R.D., Baldini, L., Baring, M.G., Belfiore, A., Charles, E., Chiang, J., Dā€™Ammando, F., Dermer, C.D., Funk, S., Grove, J.E., Harding, A.K., Hays, E., Kerr, M., Massaro, F., Mazziotta, M.N., Romani, R.W., Saz Parkinson, P.M., Tennant, A.F., Weisskopf, M.C.: Gamma-ray activity in the Crab Nebula: the exceptional flare of 2011 April. Astrophys. J. 749, 26 (2012). doi:10.1088/0004-637X/749/1/26

    Google ScholarĀ 

  • Camus, N.F., Komissarov, S.S., Bucciantini, N., Hughes, P.A.: Observations of ā€˜wispsā€™ in magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 400, 1241ā€“1246 (2009). doi:10.1111/j.1365-2966.2009.15550.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cerutti, B., Uzdensky, D.A., Begelman, M.C.: Extreme particle acceleration in magnetic reconnection layers: application to the gamma-ray flares in the Crab Nebula. Astrophys. J. 746, 148 (2012). doi:10.1088/0004-637X/746/2/148

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cerutti, B., Werner, G.R., Uzdensky, D.A., Begelman, M.C.: Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770, 147 (2013). doi:10.1088/0004-637X/770/2/147

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cerutti, B., Werner, G.R., Uzdensky, D.A., Begelman, M.C.: Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection? Phys. Plasmas 21(5), 056501 (2014a). doi:10.1063/1.4872024

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cerutti, B., Werner, G.R., Uzdensky, D.A., Begelman, M.C.: Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys. J. 782, 104 (2014b). doi:10.1088/0004-637X/782/2/104

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cerutti, B., Philippov, A., Parfrey, K., Spitkovsky, A.: Particle acceleration in axisymmetric pulsar current sheets. Mon. Not. R. Astron. Soc. 448, 606ā€“619 (2015). doi:10.1093/mnras/stv042

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cerutti, B., Philippov, A.A., Spitkovsky, A.: Modelling high-energy pulsar light curves from first principles. Mon. Not. R. Astron. Soc. 457, 2401ā€“2414 (2016). doi:10.1093/mnras/stw124

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Chen, A.Y., Beloborodov, A.M.: Electrodynamics of Axisymmetric Pulsar Magnetosphere with Electron-Positron Discharge: A Numerical Experiment. Astrophys. J. Lett. 795, 22 (2014). doi:10.1088/2041-8205/795/1/L22

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330ā€“351 (1976). doi:10.1016/0021-9991(76)90053-X

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • de Jager, O.C., Harding, A.K., Michelson, P.F., Nel, H.I., Nolan, P.L., Sreekumar, P., Thompson, D.J.: Gamma-ray observations of the Crab Nebula: a study of the synchro-compton spectrum. Astrophys. J. 457, 253 (1996). doi:10.1086/176726

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Del Zanna, L., Amato, E., Bucciantini, N.: Axially symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants. On the origin of torus and jet-like features. Astron. Astrophys. 421, 1063ā€“1073 (2004). doi:10.1051/0004-6361:20035936

    Google ScholarĀ 

  • Drake, J.F., Opher, M., Swisdak, M., Chamoun, J.N.: A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709, 963ā€“974 (2010). doi:10.1088/0004-637X/709/2/963

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Elkina, N.V., BĆ¼chner, J.: A new conservative unsplit method for the solution of the Vlasov equation. J. Comput. Phys. 213, 862ā€“875 (2006). doi:10.1016/j.jcp.2005.09.023

    ArticleĀ  MATHĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  • Esirkepov, T.Z.: Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135, 144ā€“153 (2001). doi:10.1016/S0010-4655(00)00228-9

    ArticleĀ  MATHĀ  ADSĀ  Google ScholarĀ 

  • Gallant, Y.A., Hoshino, M., Langdon, A.B., Arons, J., Max, C.E.: Relativistic, perpendicular shocks in electron-positron plasmas. Astrophys. J. 391, 73ā€“101 (1992). doi:10.1086/171326

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Goldreich, P., Julian, W.H.: Pulsar electrodynamics. Astrophys. J. 157, 869 (1969). doi:10.1086/150119

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Gruzinov, A., Waxman, E.: Gamma-ray burst afterglow: polarization and analytic light curves. Astrophys. J. 511, 852ā€“861 (1999). doi:10.1086/306720

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Guilbert, P.W., Fabian, A.C., Rees, M.J.: Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 205, 593ā€“603 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Guo, F., Li, H., Daughton, W., Liu, Y.-H.: Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113(15), 155005 (2014). doi:10.1103/PhysRevLett.113.155005

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • HaugbĆølle, T.: Three-dimensional modeling of relativistic collisionless ion-electron shocks. Astrophys. J. 739, 42 (2011). doi:10.1088/2041-8205/739/2/L42

    ArticleĀ  Google ScholarĀ 

  • Hester, J.J., Mori, K., Burrows, D., Gallagher, J.S., Graham, J.R., Halverson, M., Kader, A., Michel, F.C., Scowen, P.: Hubble space telescope and chandra monitoring of the Crab synchrotron nebula. Astrophys. J. 577, 49ā€“52 (2002). doi:10.1086/344132

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles, Taylor & Francis, New York (1988)

    BookĀ  MATHĀ  Google ScholarĀ 

  • Holland, R.: THREDSā€”a finite-difference time-domain EMP code in 3D spherical coordinates. IEEE Trans. Nucl. Sci. 30, 4592ā€“4595 (1983). doi:10.1109/TNS.1983.4333177

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hoshino, M.: Wakefield acceleration by radiation pressure in relativistic shock waves. Astrophys. J. 672, 940ā€“956 (2008). doi:10.1086/523665

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hoshino, M., Arons, J., Gallant, Y.A., Langdon, A.B.: Relativistic magnetosonic shock waves in synchrotron sourcesā€”shock structure and nonthermal acceleration of positrons. Astrophys. J. 390, 454ā€“479 (1992). doi:10.1086/171296

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Kagan, D., Sironi, L. Cerutti, B., Giannios, D.: Relativistic magnetic reconnection in pair plasmas and its astrophysical applications. Space Sci. Rev. 191, 545ā€“573 (2015). doi:10.1007/s11214-014-0132-9

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Kalapotharakos, C., Contopoulos, I.: Three-dimensional numerical simulations of the pulsar magnetosphere: preliminary results. Astron. Astrophys. 496, 495ā€“502 (2009). doi:10.1051/0004-6361:200810281

    ArticleĀ  MATHĀ  ADSĀ  Google ScholarĀ 

  • Keshet, U., Waxman, E.: Energy spectrum of particles accelerated in relativistic collisionless shocks. Phys. Rev. Lett. 94(11), 111102 (2005). doi:10.1103/PhysRevLett.94.111102

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Kirk, J.G., SkjƦraasen, O.: Dissipation in poynting-flux-dominated flows: the Ļƒ-problem of the Crab pulsar wind. Astrophys. J. 591, 366ā€“379 (2003). doi:10.1086/375215

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Kirk, J.G., Guthmann, A.W., Gallant, Y.A., Achterberg, A.: Particle acceleration at ultrarelativistic shocks: an eigenfunction method. Astrophys. J. 542, 235ā€“242 (2000). doi:10.1086/309533

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Komissarov, S.S.: Magnetic dissipation in the Crab nebula. Mon. Not. R. Astron. Soc. 428, 2459ā€“2466 (2013). doi:10.1093/mnras/sts214

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Komissarov, S.S., Lyubarsky, Y.E.: Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 349, 779ā€“792 (2004). doi:10.1111/j.1365-2966.2004.07597.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lyubarsky, Y.E.: The termination shock in a striped pulsar wind. Mon. Not. R. Astron. Soc. 345, 153ā€“160 (2003). doi:10.1046/j.1365-8711.2003.06927.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lyubarsky, Y.E.: On the relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 358, 113ā€“119 (2005). doi:10.1111/j.1365-2966.2005.08767.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lyubarsky, Y.E.: Highly magnetized region in pulsar wind nebulae and origin of the Crab gamma-ray flares. Mon. Not. R. Astron. Soc. 427, 1497ā€“1502 (2012). doi:10.1111/j.1365-2966.2012.22097.x

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lyubarsky, Y., Kirk, J.G.: Reconnection in a striped pulsar wind. Astrophys. J. 547, 437ā€“448 (2001). doi:10.1086/318354

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Lyutikov, M., Sironi, L., Komissarov, S., Porth, O.: Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares. ArXiv e-prints (2016)

    Google ScholarĀ 

  • Marder, B.: A method for incorporating Gaussā€™ law into electromagnetic PIC codes. J. Comput. Phys. 68, 48ā€“55 (1987). doi:10.1016/0021-9991(87)90043-X

    ArticleĀ  MATHĀ  ADSĀ  Google ScholarĀ 

  • Martins, S.F., Fonseca, R.A., Silva, L.O., Mori, W.B.: Ion dynamics and acceleration in relativistic shocks. Astrophys. J. 695, 189ā€“193 (2009). doi:10.1088/0004-637X/695/2/L189

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Medvedev, M.V., Loeb, A.: Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697ā€“706 (1999). doi:10.1086/308038

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Melzani, M., Walder, R., Folini, D., Winisdoerffer, C., Favre, J.M.: The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron. Astrophys. 570, 112 (2014). doi:10.1051/0004-6361/201424193

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Mignone, A., Striani, E., Tavani, M., Ferrari, A.: Modelling the kinked jet of the Crab Nebula. Mon. Not. R. Astron. Soc. 436, 1102ā€“1115 (2013). doi:10.1093/mnras/stt1632

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Mori, K., Burrows, D.N., Hester, J.J., Pavlov, G.G., Shibata, S., Tsunemi, H.: Spatial variation of the x-ray spectrum of the Crab Nebula. Astrophys. J. 609, 186ā€“193 (2004). doi:10.1086/421011

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Munz, C.-D., Omnes, P., Schneider, R., SonnendrĆ¼cker, E., VoƟ, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484ā€“511 (2000). doi:10.1006/jcph.2000.6507

    ArticleĀ  MATHĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  • Nalewajko, K., Zrake, J., Yuan, Y., East, W.E., Blandford, R.D.: Kinetic simulations of the lowest-order unstable mode of relativistic magnetostatic equilibria. Astrophys. J. 826, 115 (2016). doi:10.3847/0004-637X/826/2/115

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Philippov, A.A., Spitkovsky, A., Cerutti, B.: Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys. J. L. 801, 19 (2015). doi:10.1088/2041-8205/801/1/L19

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Spitkovsky, A.: Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J. 698, 1523ā€“1549 (2009). doi:10.1088/0004-637X/698/2/1523

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Spitkovsky, A.: Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011a). doi:10.1088/0004-637X/741/1/39

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Spitkovsky, A.: Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys. J. 726, 75 (2011b). doi:10.1088/0004-637X/726/2/75

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Spitkovsky, A.: Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds. Comput. Sci. Discovery 5(1), 014014 (2012). doi:10.1088/1749-4699/5/1/014014

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Spitkovsky, A.: Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. 783, 21 (2014). doi:10.1088/2041-8205/783/1/L21

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Spitkovsky, A., Arons, J.: The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54 (2013). doi:10.1088/0004-637X/771/1/54

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Keshet, U., Lemoine, M.: Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191, 519ā€“544 (2015a). doi:10.1007/s11214-015-0181-8

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Petropoulou, M., Giannios, D.: Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 450, 183ā€“191 (2015b). doi:10.1093/mnras/stv641

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sironi, L., Giannios, D., Petropoulou, M.: Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go. Mon. Not. R. Astron. Soc. 462, 48ā€“74 (2016). doi:10.1093/mnras/stw1620

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Spitkovsky, A.: On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys. J. 673, 39ā€“42 (2008a). doi:10.1086/527374

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Spitkovsky, A.: Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. 682, 5ā€“8 (2008b). doi:10.1086/590248

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Tavani, M., Bulgarelli, A., Vittorini, V., Pellizzoni, A., Striani, E., Caraveo, P., Weisskopf, M.C., Tennant, A., Pucella, G., Trois, A., Costa, E., Evangelista, Y., Pittori, C., Verrecchia, F., Del Monte, E., Campana, R., Pilia, M., De Luca, A., Donnarumma, I., Horns, D., Ferrigno, C., Heinke, C.O., Trifoglio, M., Gianotti, F., Vercellone, S., Argan, A., Barbiellini, G., Cattaneo, P.W., Chen, A.W., Contessi, T., Dā€™Ammando, F., DeParis, G., Di Cocco, G., Di Persio, G., Feroci, M., Ferrari, A., Galli, M., Giuliani, A., Giusti, M., Labanti, C., Lapshov, I., Lazzarotto, F., Lipari, P., Longo, F., Fuschino, F., Marisaldi, M., Mereghetti, S., Morelli, E., Moretti, E., Morselli, A., Pacciani, L., Perotti, F., Piano, G., Picozza, P., Prest, M., Rapisarda, M., Rappoldi, A., Rubini, A., Sabatini, S., Soffitta, P., Vallazza, E., Zambra, A., Zanello, D., Lucarelli, F., Santolamazza, P., Giommi, P., Salotti, L., Bignami, G.F.: Discovery of powerful gamma-ray flares from the Crab Nebula. Science 331, 736 (2011). doi:10.1126/science.1200083

    Google ScholarĀ 

  • Timokhin, A.N., Arons, J.: Current flow and pair creation at low altitude in rotation-powered pulsarsā€™ force-free magnetospheres: space charge limited flow. Mon. Not. R. Astron. Soc. 429, 20ā€“54 (2013). doi:10.1093/mnras/sts298

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Uzdensky, D.A., Cerutti, B., Begelman, M.C.: Reconnection-powered linear accelerator and gamma-ray flares in the Crab Nebula. Astrophys. J. 737, 40 (2011). doi:10.1088/2041-8205/737/2/L40

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Vay, J.-L.: Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15(5), 056701 (2008). doi:10.1063/1.2837054

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Villasenor, J., Buneman, O.: Rigorous charge conservation for local electromagnetic field solvers. Comput. Phys. Commun. 69, 306ā€“316 (1992). doi:10.1016/0010-4655(92)90169-Y

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Weibel, E.S.: Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83ā€“84 (1959). doi:10.1103/PhysRevLett.2.83

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Weisskopf, M.C., Tennant, A.F., Arons, J., Blandford, R., Buehler, R., Caraveo, P., Cheung, C.C., Costa, E., de Luca, A., Ferrigno, C., Fu, H., Funk, S., Habermehl, M., Horns, D., Linford, J.D., Lobanov, A., Max, C., Mignani, R., Oā€™Dell, S.L., Romani, R.W., Striani, E., Tavani, M., Taylor, G.B., Uchiyama, Y., Yuan, Y.: Chandra, Keck, and VLA observations of the Crab Nebula during the 2011-April gamma-ray flare. Astrophys. J. 765, 56 (2013). doi:10.1088/0004-637X/765/1/56

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Werner, G.R., Uzdensky, D.A., Cerutti, B., Nalewajko, K., Begelman, M.C.: The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. 816, 8 (2016). doi:10.3847/2041-8205/816/1/L8

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Wilson-Hodge, C.A., Cherry, M.L., Case, G.L., Baumgartner, W.H., Beklen, E., Narayana Bhat, P., Briggs, M.S., Camero-Arranz, A., Chaplin, V., Connaughton, V., Finger, M.H., Gehrels, N., Greiner, J., Jahoda, K., Jenke, P., Kippen, R.M., Kouveliotou, C., Krimm, H.A., Kuulkers, E., Lund, N., Meegan, C.A., Natalucci, L., Paciesas, W.S., Preece, R., Rodi, J.C., Shaposhnikov, N., Skinner, G.K., Swartz, D., von Kienlin, A., Diehl, R., Zhang, X.-L.: When a standard candle flickers. Astrophys. J. 727, 40 (2011). doi:10.1088/2041-8205/727/2/L40

    Google ScholarĀ 

  • Yee, K.: Numerical solution of inital boundary value problems involving maxwellā€™s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302ā€“307 (1966). doi:10.1109/TAP.1966.1138693

    ArticleĀ  MATHĀ  ADSĀ  Google ScholarĀ 

  • Yuan, Y., Nalewajko, K., Zrake, J., East, W.E., Blandford, R.D.: Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria. Astrophys. J. 828, 92 (2016). doi:10.3847/0004-637X/828/2/92

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Acknowledgements

LS acknowledges support from DoE DE-SC0016542 and NASA Fermi NNX16AR75G. BC acknowledges support from CNES and Labex OSUG@2020 (ANR10 LABX56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sironi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sironi, L., Cerutti, B. (2017). Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling. In: Torres, D. (eds) Modelling Pulsar Wind Nebulae. Astrophysics and Space Science Library, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-319-63031-1_11

Download citation

Publish with us

Policies and ethics