Skip to main content

Growth Hormone and IGF-1 Axis in Aging and Longevity

  • Chapter
  • First Online:
Hormones in Ageing and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 6))

Abstract

The growth hormone (GH)-IGF-1 axis, which regulates postnatal growth and metabolism, progressively declines after puberty. This decline causes alterations in body composition and thus physical frailty in aging animals. By contrast, attenuation of the GH-IGF-1 axis consistently increases lifespan in a range of animals. Studies using mutant animals reveal key molecules for longevity in cytoplasmic IGF-1 signaling, including mechanistic target of rapamycin (mTOR) and forkhead box, subgroup O (FoxO) transcription factors. Dietary calorie restriction, a robust experimental intervention to extend lifespan in animals, also inhibits the GH-IGF-1 axis. Studies in human dwarf cohorts report lower incidences of cancers and cardiovascular diseases, though there is no scientific evidence of extended lifespan in these people. Genome-wide studies in long-lived people indicate an association between longevity and minor alleles of genes that lead to a reduction in IGF-1 signaling. Evolutionary views suggest a trade-off relation between growth and longevity. Therefore, it is rational to conclude that the GH-IGF-1 axis is the central pathway that regulates lifespan and thus aging in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartke A (2008) Growth hormone and aging: a challenging controversy. Clin Interv Aging 3:659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldt HB, Conover CA (2007) Pregnancy-associated plasma protein-A (PAPP-A): a local regulator of IGF bioavailability through cleavage of IGFBPs. Growth Horm IGF Res 17:10–18. doi:10.1016/j.ghir.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88:3299–3304. doi:10.1210/jc.2002-021810

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33. doi:10.1038/384033a0

    Article  CAS  PubMed  Google Scholar 

  • Butler AA, Le Roith D (2001) Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol 63:141–164. doi:10.1146/annurev.physiol.63.1.141

    Article  CAS  PubMed  Google Scholar 

  • Cohn L, Feller AG, Draper MW, Rudman IW, Rudman D (1993) Carpal tunnel syndrome and gynaecomastia during growth hormone treatment of elderly men with low circulating IGF-I concentrations. Clin Endocrinol (Oxf) 39:417–425

    Article  CAS  Google Scholar 

  • Conover CA, Bale LK (2007) Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6:727–729. doi:10.1111/j.1474-9726.2007.00328.x

    Article  CAS  PubMed  Google Scholar 

  • Conover CA, Bale LK, Mader JR, Mason MA, Keenan KP, Marler RJ (2010) Longevity and age-related pathology of mice deficient in pregnancy-associated plasma protein-A. J Gerontol A Biol Sci Med Sci 65:590–599. doi:10.1093/gerona/glq032

    Article  PubMed  Google Scholar 

  • Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613

    Article  CAS  PubMed  Google Scholar 

  • Di Bona D, Accardi G, Virruso C, Candore G, Caruso C (2014) Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Curr Vasc Pharmacol 12:674–681

    Article  PubMed  Google Scholar 

  • Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98:6736–6741. doi:10.1073/pnas.111158898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130

    Article  CAS  PubMed  Google Scholar 

  • Gertler AA, Cohen HY (2013) SIRT6, a protein with many faces. Biogerontology 14:629–639. doi:10.1007/s10522-013-9478-8

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425. doi:10.1038/sj.onc.1209086

    Article  CAS  PubMed  Google Scholar 

  • Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng C-W, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, Cohen P, Longo VD (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13–70ra13. doi:10.1126/scitranslmed.3001845

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pathor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. doi:10.10387/nature08221

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187. doi:10.1038/nature01298

    Article  CAS  PubMed  Google Scholar 

  • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature. doi:10.1038/nature10815

    PubMed  Google Scholar 

  • Kappeler L, De Magalhaes Filho C, Dupont J, Leneuve P, Cervera P, Périn L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6:e254. doi:10.1371/journal.pbio.0060254

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464. doi:10.1038/366461a0

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto K, Tahara S, Sasaki T, Matsumoto S, Kaneko T, Kondo H, Yanabe M, Takagi S, Shinkai T (2010) Spontaneous dwarf rat: a novel model for aging research. Geriatr Gerontol Int 10:94–101. doi:10.1111/j.1447-0594.2009.00559.x

    Article  PubMed  Google Scholar 

  • Li S, Crenshaw EB, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528–533. doi:10.1038/347528a0

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, Hoffman AR (2007) Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med 146:104–115

    Article  PubMed  Google Scholar 

  • Miller RA, Harper JM, Galecki A, Burke DT (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1:22–29

    Article  CAS  PubMed  Google Scholar 

  • Miskin R, Masos T (1997) Transgenic mice overexpressing urokinase-type plasminogen activator in the brain exhibit reduced food consumption, body weight and size, and increased longevity. J Gerontol A Biol Sci Med Sci 52:B24–B118

    Google Scholar 

  • Miskin R, Tirosh O, Pardo M, Zusman I, Schwartz B, Yahav S, Dubnov G, Kohen R (2005) AlphaMUPA mice: a transgenic model for longevity induced by caloric restriction. Mech Ageing Dev 126:255–261. doi:10.1016/j.mad.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng H-L, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329. doi:10.1016/j.cell.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  • Nojima A, Yamashita M, Yoshida Y, Shimizu I, Ichimiya H, Kamimura N, Kobayashi Y, Ohta S, Ishii N, Minamino T (2013) Haploinsufficiency of akt1 prolongs the lifespan of mice. PLoS ONE 8:e69178. doi:10.1371/journal.pone.0069178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48:647–653. doi:10.1016/j.exger.2013.02.025

  • Oliveira CRP, Salvatori R, Meneguz-Moreno RA, Aguiar-Oliveira MH, Pereira RMC, Valença EHA, Araujo VP, Farias NT, Silveira DCR, Vieira JGH, Barreto-Filho JAS (2010) Adipokine profile and urinary albumin excretion in isolated growth hormone deficiency. J Clin Endocrinol Metab 95:693–698. doi:10.1210/jc.2009-1919

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Shinkai T (1986) Effects of chronic hyperthyroidism on the lifespan of the rat. Mech Ageing Dev 33:275–282

    Article  CAS  PubMed  Google Scholar 

  • Paik J-H, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323. doi:10.1016/j.cell.2006.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM (2010) Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J 24:5073–5079. doi:10.1096/fj.10-163253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potthoff MJ, Kliewer SA, Mangelsdorf DJ (2012) Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 26:312–324. doi:10.1101/gad.184788.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE (1990) Effects of human growth hormone in men over 60 years old. N Engl J Med 323:1–6. doi:10.1056/NEJM199007053230101

    Article  CAS  PubMed  Google Scholar 

  • Sattler FR (2013) Growth hormone in the aging male. Best Pract Res Clin Endocrinol Metab 27:541–555. doi:10.1016/j.beem.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savine R, Sönksen P (2000) Growth hormone–hormone replacement for the somatopause? Horm Res 53(Suppl 3):37–41

    CAS  PubMed  Google Scholar 

  • Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadani F, Okkenhaug K, Schuster E, Blanc E, Piper MD, Al-Qassab H, Speakman JR, Carmignac D, Robinson ICA, Thornton JM, Gems D, Partridge L, Withers DJ (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22:807–818. doi:10.1096/fj.07-9261com

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson ICA, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144. doi:10.1126/science.1177221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevah O, Laron Z (2007) Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm IGF Res 17:54–57. doi:10.1016/j.ghir.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa I, Higami Y, Utsuyama M, Tuchiya T, Komatsu T, Chiba T, Yamaza H (2002) Life span extension by reduction in growth hormone-insulin-like growth factor-1 axis in a transgenic rat model. Am J Pathol 160:2259–2265. doi:10.1016/S0002-9440(10)61173-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa I, Chiba T, Yamaza H, Komatsu T (2008) Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells 26:427–435

    CAS  PubMed  Google Scholar 

  • Shimokawa I (2015) Hormonal influence and modulation in aging (Chapter 4). In: Yu BP (ed) Nutrition. Aging Interventions, Exercise and Epigenetics, pp 69–83

    Google Scholar 

  • Shimokawa I, Komatsu T, Hayashi N, Kim SE, Kawata T, Park S, Hayashi H, Yamaza H, Chiba T, Mori R (2015) The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell n/a–n/a. doi:10.1111/acel.12340

  • Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF, Chakrabarty S, Lee S, Bennett C, Ingram R, Moore T, Ramsey M (2005) Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146:2920–2932. doi:10.1210/en.2005-0058

    Article  CAS  PubMed  Google Scholar 

  • Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O’Connell SM, Gukovsky I, Carrière C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384:327–333. doi:10.1038/384327a0

    Article  CAS  PubMed  Google Scholar 

  • Steger RW, Bartke A, Cecim M (1993) Premature ageing in transgenic mice expressing different growth hormone genes. J Reprod Fertil Suppl 46:61–75

    CAS  PubMed  Google Scholar 

  • Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 105:3438–3442. doi:10.1073/pnas.0705467105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun LY, Spong A, Swindell WR, Fang Y, Hill C, Huber JA, Boehm JD, Westbrook R, Salvatori R, Bartke A (2013) Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. eLife 2:e01098. doi:10.7554/eLife.01098

    PubMed  PubMed Central  Google Scholar 

  • Svensson J, Sjögren K, Fäldt J, Andersson N, Isaksson O, Jansson J-O, Ohlsson C (2011) Liver-derived IGF-I regulates mean life span in mice. PLoS ONE 6:e22640. doi:10.1371/journal.pone.0022640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:369–372. doi:10.1126/science.1142179

    Article  CAS  PubMed  Google Scholar 

  • Teumer A, Qi Q, Nethander M, Aschard H, Bandinelli S, Beekman M, Berndt SI, Bidlingmaier M, Broer L, CHARGE Longevity Working Group, Cappola A, Ceda GP, Chanock S, Chen M-H, Chen TC, Chen Y-DI, Chung J, Del Greco Miglianico F, Eriksson J, Ferrucci L, Friedrich N, Gnewuch C, Goodarzi MO, Grarup N, Guo T, Hammer E, Hayes RB, Hicks AA, Hofman A, Houwing-Duistermaat JJ, Hu F, Hunter DJ, Husemoen LL, Isaacs A, Jacobs KB, Janssen JAMJL, Jansson J-O, Jehmlich N, Johnson S, Juul A, Karlsson M, Kilpeläinen TO, Kovacs P, Kraft P, Li C, Linneberg A, Liu Y, Loos RJF, Body Composition Genetics Consortium, Lorentzon M, Lu Y, Maggio M, Magi R, Meigs J, Mellström D, Nauck M, Newman AB, Pollak MN, Pramstaller PP, Prokopenko I, Psaty BM, Reincke M, Rimm EB, Rotter JI, Saint Pierre A, Schurmann C, Seshadri S, Sjögren K, Slagboom PE, Strickler HD, Stumvoll M, Suh Y, Sun Q, Zhang C, Svensson J, Tanaka T, Tare A, Tönjes A, Uh H-W, van Duijn CM, van Heemst D, Vandenput L, Vasan RS, Völker U, Willems SM, Ohlsson C, Wallaschofski H, Kaplan RC (2016) Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell 15:811–824. doi:10.1111/acel.12490

    Article  Google Scholar 

  • van der Spoel E, Jansen SW, Akintola AA, Ballieux BE, Cobbaert CM, Slagboom PE, Blauw GJ, Westendorp RGJ, Pijl H, Roelfsema F, van Heemst D (2016) Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity. Aging Cell 15:1126–1131. doi:10.1111/acel.12519

    Article  Google Scholar 

  • van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RGJ (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4:79–85. doi:10.1111/j.1474-9728.2005.00148.x

    Article  PubMed  Google Scholar 

  • Webb AE, Kundaje A, Brunet A (2016) Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 15:673–685. doi:10.1111/acel.12479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:13987–13992. doi:10.1073/pnas.0801030105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Gontier G, Chaker Z, Lacube P, Dupont J, Holzenberger M (2014) Longevity effect of IGF-1R(±) mutation depends on genetic background-specific receptor activation. Aging Cell 13:19–28. doi:10.1111/acel.12145

    Article  CAS  PubMed  Google Scholar 

  • Yamaza H, Komatsu T, Wakita S, Kijogi C, Park S, Hayashi H, Chiba T, Mori R, Furuyama T, Mori N, Shimokawa I (2010) FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell 9:372–382. doi:10.1111/j.1474-9726.2010.00563.x

    Article  CAS  PubMed  Google Scholar 

  • Yuan R, Tsaih S-W, Petkova SB, Marin de Evsikova C, Xing S, Marion MA, Bogue MA, Mills KD, Peters LL, Bult CJ, Rosen CJ, Sundberg JP, Harrison DE, Churchill GA, Paigen B (2009) Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8:277–287. doi:10.1111/j.1474-9726.2009.00478.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan R, Gatti DM, Krier R, Malay E, Schultz D, Peters LL, Churchill GA, Harrison DE, Paigen B (2015) Genetic regulation of female sexual maturation and longevity through circulating IGF1. J Gerontol A Biol Sci Med Sci 70:817–826. doi:10.1093/gerona/glu114

  • Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao G, Potthoff MJ, Wei W, Wan Y, Yu RT, Evans RM, Kliewer SA, Mangelsdorf DJ (2012) The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1:e00065. doi:10.7554/eLife.00065

  • Ziv E, Hu D (2011) Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 10:201–204. doi:10.1016/j.arr.2010.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Shimokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shimokawa, I. (2017). Growth Hormone and IGF-1 Axis in Aging and Longevity. In: Rattan, S., Sharma, R. (eds) Hormones in Ageing and Longevity. Healthy Ageing and Longevity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-63001-4_5

Download citation

Publish with us

Policies and ethics