Skip to main content

Somatotropic Axis’ Role in Ageing and Longevity Could Depend on Life-History Strategies of Species

  • Chapter
  • First Online:
Hormones in Ageing and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 6))

Abstract

It is often argued that food restriction and modulation of the somatotropic axis could increase lifespan in all species, and particularly in human beings. However, this rationale does not take into account the life-history strategies of species and the way they adapt to environmental challenges, particularly to food restriction. It is argued that, for short-lived species of a small size, the best strategy to survive starvation is staying at the same place and increasing lifespan, because they cannot migrate to discover new food sources, because of a high predatory load and/or an inability to cross long distances. Emigration is an appropriate strategy for long-lived species of a large size less at risk of predation. Because humans tend to emigrate when facing unfavourable conditions rather than staying at home, food restriction is not expected to increase lifespan in humans. As an outcome, modulating the somatotropic axis would probably not increase human lifespan, because increased lifespan has not been selected as a strategy: how a genetic pathway could modulate lifespan in the absence of any selective pressure?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austad SN (1989) Life extension by dietary restriction in the bowl and doily spider, Frontinella pyramitela. Exp Gerontol 24:83–92

    Article  CAS  PubMed  Google Scholar 

  • Austad SN, Fischer KE (1991) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J Gerontol 46:B47–B53

    Article  CAS  PubMed  Google Scholar 

  • Bartke A (2005) Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinol 146:3718–3723

    Article  CAS  Google Scholar 

  • Bartke A (2016) Healthspan and longevity can be extended by suppression of growth hormone signaling. Mamm Genome 27:289–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartke A, Sun LY, Longo C (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 93:571–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman J, Jaeger AG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Brack C, Bechter-Thuring E, Labuhn M (1997) N-acetylcysteine slows down ageing and increases the life span of Drosophila melangaster. Cell Mol Life Sci 53:960–966

    CAS  PubMed  Google Scholar 

  • Cava E, Fontana L (2013) Will calorie restriction work in humans? Aging (Albany N Y) 5:507–514

    Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kos-matka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557

    Article  PubMed  PubMed Central  Google Scholar 

  • David JR (1988) Temperature. In: Lints FA, Soliman MH (eds) Drosophila as a model organism for ageing studies. Blackie, Glasgow, pp 33–45

    Chapter  Google Scholar 

  • de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515–1526

    Article  PubMed  PubMed Central  Google Scholar 

  • de Grey ADNJ (2005) The unfortunate influence of the weather on the rate of ageing: why human caloric restriction or its emulation may only extend life expectancy by 2–3 years. Gerontology 51:73–82

    Article  PubMed  Google Scholar 

  • Demetrius L (2005) Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep 6:S39–S44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Article  Google Scholar 

  • Flachsbart F, Caliebe A, Kleindorp R, Blanché H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106:2700–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford ES, Dietz WH (2013) Trends in energy intake among adults in the United States: findings from NHANES. Am J Clin Nutr 97:848–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankowski H, Alavez S, Spilman P, Mark KA, Nelson JD, Mollahan P, Rao RV, Chen SF, Lithgow GJ, Ellerby HM (2013) Dimethyl sulfoxide and dimethyl formamide increase lifespan of C. elegans in liquid. Mech Ageing Dev 134:69–78

    Article  CAS  PubMed  Google Scholar 

  • Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum lifespan of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol Biol Sci 43:B102–B109

    Article  CAS  Google Scholar 

  • Gilbert NI, Correia RA, Silva JP, Pacheco C, Catry I, Atkinson PW, Gill JA, Franco AMA (2016) Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov Ecol 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallengren E, Almgren P, Engstro ̈m G, Hedblad B, Persson M, Suhr M, Bergmann A, Melander O (2014) Fasting levels of high-sensitivity growth hormone predict cardiovascular morbidity and mortality: the Malmö diet and cancer study. J Am Coll Cardiol 64:1452–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JM, Leathers CW, Austad SN (2006) Does caloric restriction extend life in wild mice? Aging Cell 5:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1989) Food reproduction and longevity: Is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays 10:125–127

    Article  CAS  PubMed  Google Scholar 

  • Houthoofd K, Johnson TE, Vanfleteren JR (2005) Dietary restriction in the nematode Caenorhabditis elegans. J Gerontol Biol Sci 60A:1125–1131

    Article  CAS  Google Scholar 

  • Johnson TE, Mitchell DH, Kline S, Kemal R, Foy J (1984) Arresting development arrests aging in the nematode Caenorhabditis elegans. Mech Ageing Dev 28:23–40

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RC, Bùžková P, Cappola AR, Strickler HD, McGinn AP, Mercer LD, Arnold AM, Pollak MN, Newman AB (2012) Decline in circulating insulin-like growth factors and mortality in older adults: Cardiovascular Health Study All-Stars study. J Clin Endocrinol Metab 97:1970–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greely EH, Lust G, Segre M, Smith GK, Stowe HD (2002) Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 220:1315–1320

    Article  PubMed  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Klass MR (1983) A method for the isolation of longevity mutants in the nematode caenorhabditis elegans and initial results. Mech. Ageing Dev. 22: 279–286

    Google Scholar 

  • Klass MR, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260:523–525

    Article  CAS  PubMed  Google Scholar 

  • Le Bourg E (2010) Predicting whether dietary restriction would increase longevity in species not tested so far. Ageing Res Rev 9:289–297

    Article  PubMed  Google Scholar 

  • Le Bourg E (2012) Dietary restriction studies in humans: focusing on obesity, forgetting longevity. Gerontology 58:126–128

    Article  PubMed  Google Scholar 

  • Le Bourg E (2016) The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology 17:421–429

    Article  PubMed  Google Scholar 

  • Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9:92–95

    Article  CAS  PubMed  Google Scholar 

  • Lord K, Feinstein M, Smith B, Coppinger R (2013) Variation in reproductive traits of the genus Canis with special attention to the domestic dog (Canis familiaris). Behav Proc 92:131–142

    Article  Google Scholar 

  • Lund KE, Lund M, Bryhni A (2009) Tobacco consumption among men and women 1927-2007. Tidsskr Nor Legeforen 129:1871–1874

    Article  Google Scholar 

  • Lyman CP, O’Brien RC, Greene GC, Papafrangos ED (1981) Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212:668–670

    Article  CAS  PubMed  Google Scholar 

  • Maison P, Balkau B, Simon D, Chanson P, Rosselin G, Eschwege E (1998) Growth hormone as a risk for premature mortality in healthy subjects: data from the Paris prospective study. Br Med J 316:1132–1133

    Article  CAS  Google Scholar 

  • Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207

    Article  CAS  PubMed  Google Scholar 

  • Masel J, Promislow DEL (2016) Answering evolutionary questions: a guide for mechanistic biologists. BioEssays 38:704–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    Article  CAS  PubMed  Google Scholar 

  • Mech LD (1974) Canis lupus. Mamm Species 37:1–6

    Article  Google Scholar 

  • Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, Cohen P, Barzilai N (2014) Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell 13:769–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milman S, Huffman DM, Barzilai N (2016) The somatotropic axis in human aging: framework for the current state of knowledge and future research. Cell Metab 23:980–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Most J, Tosti V, Redman LM, Fontana L (2016) Calorie restriction in humans: an update. Ageing Res Rev (in press)

    Google Scholar 

  • Nygaard M, Lindahl-Jacobsen R, Soerensen M, Mengel-From J, Andersen-Ranberg K, Jeune B, Vaupel JW, Tan Q, Christiansen L, Christensen K (2014) Birth cohort differences in the prevalence of longevity-associated variants in APOE and FOXO3A in Danish long-lived individuals. Exp Gerontol 57:41–46

    Article  CAS  PubMed  Google Scholar 

  • Omodei D, Fontana L (2011) Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 585:1537–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan JP, Austad SN (1989) Natural selection, dietary restriction, and extended longevity. Growth Dev Aging 53:4–6

    CAS  PubMed  Google Scholar 

  • Pianka ER (1970) On r and K selection. Am Nat 102:592–597

    Article  Google Scholar 

  • Popper KR (1935) Logik der Forschung (the logic of scientific discovery). Verlag von Julius Springer, Vienna

    Google Scholar 

  • Simpson SJ, Raubenheimer D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6:133–142

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Mitchell SE, Mazidi M (2016) Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone. Exp Geront (in press)

    Google Scholar 

  • Stearns SC (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41:173–187

    Article  Google Scholar 

  • Stewart ST, Cutler DM, Rosen AB (2009) Forecasting the effects of obesity and smoking on U.S. life expectancy. N Engl J Med 361:2252–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strøm A, Jensen RA (1951) Mortality from circulatory diseases in Norway 1940-1945. Lancet 1:126–129

    Article  PubMed  Google Scholar 

  • Van der Spoel E, Rozing MP, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, de Craen AJ, Westendorp RG, van Heemst D (2015) Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany N Y) 7:956–963

    Google Scholar 

  • Van Voorhies WA, Fuchs J, Thomas S (2005) The longevity of Caenorhabditis elegans in soil. Biol Lett 1:247–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasser DE, Sherman PW (2010) Avian longevities and their interpretation under evolutionary theories of senescence. J Zool 280:103–155

    Article  Google Scholar 

  • Weindruch R (2006) Will dietary restriction work in primates? Biogerontology 7:169–171

    Article  PubMed  Google Scholar 

  • Yu BP (2006) Why calorie restriction would work for human longevity. Biogerontology 7:179–182

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Le Bourg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Le Bourg, É. (2017). Somatotropic Axis’ Role in Ageing and Longevity Could Depend on Life-History Strategies of Species. In: Rattan, S., Sharma, R. (eds) Hormones in Ageing and Longevity. Healthy Ageing and Longevity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-63001-4_2

Download citation

Publish with us

Policies and ethics