Skip to main content

Precision Medicine in Lung Cancer

  • Chapter
  • First Online:
Precision Molecular Pathology of Lung Cancer

Part of the book series: Molecular Pathology Library ((MPLB))

Abstract

The last 25 years have seen a remarkable change in the way we manage patients with lung cancer, especially those with advanced non-small cell lung cancer (NSCLC). A rather nihilistic approach, with poor therapy options, has been transformed by the availability of some very effective therapies, at least for some of our patients. Most of these therapies are effective against a particular molecular biological facet of the individual tumour. Patients who are likely to respond to these molecularly targeted treatments are selected on the basis of particular molecular characteristics identified at the time of pathological diagnosis. The identification of biomarkers for the selection of treatments has transformed the pathological diagnosis of NSCLC.

These developments have, of course, implications for patients, oncologists and pathologists. In pathology, a new range of concepts and skills has been embraced, and for ‘traditional’ histo- and cytopathologists, there have been new opportunities to embrace molecular pathology as part of their diagnostic role. This has required a better understanding of the diagnostic techniques used in the pathology laboratory, as well as how our routine sample processing enhances or hinders them. Lung cancer pathologists have to be quite skilled in tissue management as our oncologists, and patients, require much more information from dwindling tissue resources. The value of performing tests to strict quality standards is ever more apparent. Precision medicine for patients with lung cancer is now a reality and has placed pathology, and pathologists, in the centre of the patient management process. A knowledge of the molecular pathology of lung cancer has become ever more important as pathologists take on new roles in diagnosis of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert A. Selective toxicity. 5th ed. London: Chapman and Hall; 1973.

    Book  Google Scholar 

  2. Schiller JH, Harrington D, Belani CP, et al. Comparison of Four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346:92–8.

    Article  CAS  PubMed  Google Scholar 

  3. Peifer M, Fernandez-Cuesta L, Sos ML. Integrative genome analyses identify key somatic driver mutations in small cell lung cancer. Nature. 2012;44:1104–10.

    CAS  Google Scholar 

  4. Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3 targeted drug-antibody conjugate, in recurrent small cell lung cancer. A first-in-human, first-in-class, open label study. Lancet Oncol. 2017;18:42–51.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small cell lung cancer. J Clin Oncol. 2004;22:2184–91.

    Article  CAS  PubMed  Google Scholar 

  6. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  CAS  PubMed  Google Scholar 

  7. Scagliotti GV, Parikh P, Pawel JV, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naïve patients with advanced-stage non-small cell lung cancer. J Clin Oncol. 2008;26:1–10.

    Google Scholar 

  8. Paez JG, Janne PA, Lee JC, et al. EGRF mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  9. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  10. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.

    Article  CAS  PubMed  Google Scholar 

  11. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus dicetaxel in patients with non small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol. 2010;11:121–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–67.

    Article  CAS  PubMed  Google Scholar 

  14. Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heel of cancer. Science. 2002;297:63–4.

    Article  CAS  PubMed  Google Scholar 

  15. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  16. Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ou SH, Bartlett CH, Mino-Kenudson M, et al. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist. 2012;17:1351–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    Article  CAS  PubMed  Google Scholar 

  19. Pao W, Iafrate AJ, Su Z. Genetically informed lung cancer medicine. J Pathol. 2011;223:230–40.

    Article  CAS  PubMed  Google Scholar 

  20. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12:175–80.

    Article  CAS  PubMed  Google Scholar 

  21. Tsao AS, Scagliotti GV, Bunn PA, et al. Scientific advances in lung cancer 2015. J Thorac Oncol. 2016;11:613–38.

    Article  PubMed  Google Scholar 

  22. Tan W-L, Jain A, Takano A, et al. Novel therapeutic targets on the horizon for lung cancer. Lancet Oncol. 2016;17:e347–62.

    Article  CAS  PubMed  Google Scholar 

  23. Frampton GM, Ali SM, Rozenzweig M, et al. Activation of MET by diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.

    Article  CAS  PubMed  Google Scholar 

  24. Paik PK, Drilon A, Fan P-D, et al. Response to MET inhibitors in patients with stage 4 lung adenocarcinomas harbouring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5:842–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311:1998–2006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reck M, Popat S, Reinmuth N, et al. Metastatic non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii27–39.

    Article  PubMed  Google Scholar 

  27. Ettinger DS, Wood DE, Akerley W, et al. NCCN guidelines insights: non-small cell lung cancer, version 4.2016. J Natl Compr Cancer Netw. 2016;14:255–64.

    Article  Google Scholar 

  28. Cagle PT, Allen TC, Dacic S, et al. Revolution in lung cancer. New challenges for the surgical pathologist. Arch Pathol Lab Med. 2011;135:110–6.

    Article  PubMed  Google Scholar 

  29. Kerr KM. Personalized medicine in lung cancer: new challenges for pathologists. Histopathology. 2012;60:531–46.

    Article  PubMed  Google Scholar 

  30. Thunnissen E, Kerr KM, Herth FJ, et al. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer. 2012;76:1–18.

    Article  PubMed  Google Scholar 

  31. Davidson MR, Gazdar AF, Clarke BE. The pivotal role of pathology in the management of lung cancer. J Thorac Dis. 2013;5:s463–78.

    PubMed  PubMed Central  Google Scholar 

  32. Cane P, Linklater KM, Nicholson AG, et al. Morphologic and genetic classification of lung cancer: variations in practice and implications for tailored treatment. Histopathology. 2015;67:216–24.

    Article  PubMed  Google Scholar 

  33. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8:823–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kerr KM, Bubendorf L, Edelman MJ, et al. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol. 2014;25:1681–90.

    Article  CAS  PubMed  Google Scholar 

  35. Ross JS, Cronin M. Whole cancer genome sequencing by next generation methods. Am J Clin Pathol. 2011;136:527–39.

    Article  CAS  PubMed  Google Scholar 

  36. Hyman DM, Solit DB, Arcila ME, et al. Precision medicine at Memorial Sloan Kettering Cancer Center: clinical next generation sequencing enabling next generation targeted therapy trials. Drug Discov Today. 2015;20:1422–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deeb KK, Hohman CM, Risch NF, et al. Routine clinical mutation profiling of non small cell lung cancer using next generation sequencing. Arch Pathol Lab Med. 2015;139:913–21.

    Article  PubMed  Google Scholar 

  38. Coghlin CL, Smith LJ, Bakar S, et al. Quantitative analysis of tumor in bronchial biopsy specimens. J Thorac Oncol. 2010;5:448–52.

    Article  PubMed  Google Scholar 

  39. Dietel M, Bubendorf L, Dingemans AM, et al. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group. Thorax. 2016;71:177–84.

    Article  PubMed  Google Scholar 

  40. Kerr KM, Lopez-Rios F. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway? Ann Oncol. 2016;27(Suppl 3):iii16–24.

    Article  PubMed  Google Scholar 

  41. Milne C-P, Bryan C, Garafalo S, et al. Complementary versus companion diagnostics: apples and oranges? Biomark Med. 2015;9:25–34.

    Article  CAS  PubMed  Google Scholar 

  42. Atherly AJ, Camidge DR. The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br J Cancer. 2012;106:1100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fitzgibbons PL, Bradley LA, Fatheree LA, et al. Principles of analytic validation of immunohistochemical assays. Guidelines from the College of American Pathologists pathology and laboratory quality center. Arch Pathol Lab Med. 2014;138:1432–43.

    Article  PubMed  Google Scholar 

  44. Lin F, Chen Z. Standardization of diagnostic immunohistochemistry. Literature review and Geisinger experience. Arch Pathol Lab Med. 2014;138:1564–77.

    Article  PubMed  Google Scholar 

  45. Ibrahim M, Parry S, Wilkinson D, et al. ALK immunohistochemistry in non-small cell lung cancer (NSCLC). Discordant staining can impact patient treatment regimen. J Thorac Oncol. 2016;11:2241–7.

    Article  PubMed  Google Scholar 

  46. Hiley CT, Le Quesne J, Santis G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388:1002–11.

    Article  PubMed  Google Scholar 

  47. Bussolati G, Leonardo E. Technical pitfalls potentially affecting diagnoses in immunohistochemistry. J Clin Pathol. 2008;61:1184–92.

    Article  CAS  PubMed  Google Scholar 

  48. Mok T, Wu Y-L, Lee JS, et al. Detection and dynamic changes of EGFR mutations from circulating tumour DNA as a predictor of survival outcomes in NSCLC patients treated with first line intercalated erlotinib and chemotherapy. Clin Cancer Res. 2015;21:3196–203.

    Article  CAS  PubMed  Google Scholar 

  49. Karlovich C, Goldman JW, Sun J-M, et al. Assessment of EGFR mutation status in matched plasma and tumour tissue in NSCLC patients from a phase 1 study of Rociletinib (CO-1686). Clin Cancer Res. 2016;22:2386–95.

    Article  CAS  PubMed  Google Scholar 

  50. Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK rearranged lung cancers. Sci Transl Med. 2012;4:120ra17.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sasaki T, Janne PA. New strategies for the treatment of ALK rearranged non small cell lung cancers. Clin Cancer Res. 2011;17:7213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong X, Fernandez-Salas E, Li E, et al. Elucidation of resistance mechanisms to second-generation ALK inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia. 2016;18:162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cortot AB, Janne PA. Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev. 2014;23:356–66.

    Article  PubMed  Google Scholar 

  54. Piotrowska Z, Seiquist L. Epidermal growth factor receptor-mutant lung cancer. New drugs, new resistance mechanisms, and future treatment options. Cancer J. 2015;21:371–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Kerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kerr, K.M., Laing, G.M. (2018). Precision Medicine in Lung Cancer. In: Cagle, P., et al. Precision Molecular Pathology of Lung Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-62941-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62941-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62940-7

  • Online ISBN: 978-3-319-62941-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics