Skip to main content

CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function

  • Chapter
  • First Online:
The Plastic Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1015))

Abstract

The central nervous system is a highly plastic network of cells that constantly adjusts its functions to environmental stimuli throughout life. Transcription-dependent mechanisms modify neuronal properties to respond to external stimuli regulating numerous developmental functions, such as cell survival and differentiation, and physiological functions such as learning, memory, and circadian rhythmicity. The discovery and cloning of the cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) constituted a big step toward deciphering the molecular mechanisms underlying neuronal plasticity. CREB was first discovered in learning and memory studies as a crucial mediator of activity-dependent changes in target gene expression that in turn impose long-lasting modifications of the structure and function of neurons. In this chapter, we review the molecular and signaling mechanisms of neural activity-dependent recruitment of CREB and its cofactors. We discuss the crosstalk between signaling pathways that imprints diverse spatiotemporal patterns of CREB activation allowing for the integration of a wide variety of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

ATF1:

Activating transcription factor 1

BDNF:

Brain-derived neurotrophic factor

b-zip:

Basic leucine zipper domain

CaMKII/IV:

Ca2+/Calmodulin dependent Kinase II and IV

cAMP:

3′,5′-cyclic adenosine monophosphate

CaRE:

Ca2+ Responsive Element

CBP:

CREB Binding Protein

Cn:

Calcineurin

CRE:

cAMP-responsive elements

CREB:

cAMP responsive element binding protein

CRTC:

cAMP-regulated transcriptional coactivator

CREM:

cAMP responsive element modulator ERK

DARPP:

Dopamine and cAMP–regulated phosphoprotein

ERK:

Extracellular signal-regulated kinase

IP3:

Inositol 1,4,5-trisphosphate

KID:

Kinase Inducible Domain

LTP:

Long-term potentiation

MAPK:

Mitogen-activated protein kinase

MSK-I:

Mitogen/Stress Activated Kinase I

NGF:

Nerve growth factor

NMDA:

N-Methyl-d-Aspartate

NMDAR:

N-Methyl-d-Aspartate ionotropic glutamate receptor

PDGF:

Platelet-derived growth factor

PI3K:

Phosphatidylinositol 3-kinase

PIP3:

(3,4,5)-trisphosphate

PKA:

cAMP-dependent Protein Kinase

PKB:

Protein Kinase B

PKC:

Protein Kinase C

pp90RSK:

pp90 ribosomal S6 kinase

Shh:

Sonic hedgehog

SIK1:

Salt-inducible kinase 1

TORC:

Transducer of regulated CREB

TRPC:

Transient receptor potential canonical channel

VGCC:

Voltage-gated Ca2+ channel

References

  • Alberts AS, Montminy M, Shenolikar S, Feramisco JR (1994) Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol Cell Biol 14(7):4398–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12(3):141–151. doi:10.1038/nrm3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Averaimo S, Nicol X (2014) Intermingled cAMP, cGMP and calcium spatiotemporal dynamics in developing neuronal circuits. Front Cell Neurosci 8:376. doi:10.3389/fncel.2014.00376

    Article  PubMed  PubMed Central  Google Scholar 

  • Belgacem YH, Borodinsky LN (2011) Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc Natl Acad Sci U S A 108(11):4482–4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belgacem YH, Borodinsky LN (2015) Inversion of sonic hedgehog action on its canonical pathway by electrical activity. Proc Natl Acad Sci U S A 112(13):4140–4145. doi:10.1073/pnas.1419690112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bito H, Takemoto-Kimura S (2003) Ca(2+)/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium 34(4–5):425–430

    Article  CAS  PubMed  Google Scholar 

  • Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87(7):1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Bittinger MA, McWhinnie E, Meltzer J, Iourgenko V, Latario B, Liu X, Chen CH, Song C, Garza D, Labow M (2004) Activation of cAMP response element-mediated gene expression by regulated nuclear transport of TORC proteins. Curr Biol 14(23):2156–2161. doi:10.1016/j.cub.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  • Brindle P, Linke S, Montminy M (1993) Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 364(6440):821–824. doi:10.1038/364821a0

    Article  CAS  PubMed  Google Scholar 

  • Brindle P, Nakajima T, Montminy M (1995) Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc Natl Acad Sci U S A 92(23):10521–10525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brini M, Cali T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814. doi:10.1007/s00018-013-1550-7

    Article  CAS  PubMed  Google Scholar 

  • Brunelli M, Castellucci V, Kandel ER (1976) Synaptic facilitation and behavioral sensitization in Aplysia: possible role of serotonin and cyclic AMP. Science 194(4270):1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Byers D, Davis RL, Kiger JA Jr (1981) Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289(5793):79–81

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445. doi:10.1016/j.tins.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  • Castellucci VF, Kandel ER, Schwartz JH, Wilson FD, Nairn AC, Greengard P (1980) Intracellular injection of t he catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc Natl Acad Sci U S A 77(12):7492–7496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla S, Hardingham GE, Quinn DR, Bading H (1998) CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281(5382):1505–1509

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol Histopathol 20(1):299–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comerford KM, Leonard MO, Karhausen J, Carey R, Colgan SP, Taylor CT (2003) Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100(3):986–991. doi:10.1073/pnas.0337412100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conkright MD, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch JB, Montminy M (2003) TORCs: transducers of regulated CREB activity. Mol Cell 12(2):413–423

    Article  CAS  PubMed  Google Scholar 

  • Connor LM, Marriott SJ (2000) Sequences flanking the cAMP responsive core of the HTLV-I tax response elements influence CREB protease sensitivity. Virology 270(2):328–336. doi:10.1006/viro.2000.0262

    Article  CAS  PubMed  Google Scholar 

  • Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 10(2):149–159. doi:10.1038/ncb1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig JC, Schumacher MA, Mansoor SE, Farrens DL, Brennan RG, Goodman RH (2001) Consensus and variant cAMP-regulated enhancers have distinct CREB-binding properties. J Biol Chem 276(15):11719–11728. doi:10.1074/jbc.M010263200

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345(6277):718–721. doi:10.1038/345718a0

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Karl KA, Colicos MA, Prywes R, Kandel ER (1991) cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 88(11):5061–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch PJ, Jameson JL, Habener JF (1987) Cyclic AMP responsiveness of human gonadotropin-alpha gene transcription is directed by a repeated 18-base pair enhancer. Alpha-promoter receptivity to the enhancer confers cell-preferential expression. J Biol Chem 262(25):12169–12174

    CAS  PubMed  Google Scholar 

  • Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of drosophila deficient in learning. Proc Natl Acad Sci U S A 73(5):1684–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felinski EA, Quinn PG (1999) The CREB constitutive activation domain interacts with TATA-binding protein-associated factor 110 (TAF110) through specific hydrophobic residues in one of the three subdomains required for both activation and TAF110 binding. J Biol Chem 274(17):11672–11678

    Article  CAS  PubMed  Google Scholar 

  • Felinski EA, Kim J, Lu J, Quinn PG (2001) Recruitment of an RNA polymerase II complex is mediated by the constitutive activation domain in CREB, independently of CREB phosphorylation. Mol Cell Biol 21(4):1001–1010. doi:10.1128/mcb.21.4.1001-1010.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink JS, Verhave M, Kasper S, Tsukada T, Mandel G, Goodman RH (1988) The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Natl Acad Sci U S A 85(18):6662–6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19(5):1031–1047

    Article  CAS  PubMed  Google Scholar 

  • Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590. doi:10.1146/annurev.neuro.31.060407.125631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109. doi:10.1038/nature09271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schutz G (2002) Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34(2):245–253

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Ginty DD, Bading H, Greenberg ME (1994) Calcium regulation of gene expression in neuronal cells. J Neurobiol 25(3):294–303. doi:10.1002/neu.480250309

    Article  CAS  PubMed  Google Scholar 

  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260(5105):238–241

    Article  CAS  PubMed  Google Scholar 

  • Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77(5):713–725

    Article  PubMed  Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59(4):675–680

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W 3rd, Vale WW, Montminy MR (1989) A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337(6209):749–752. doi:10.1038/337749a0

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara M, Alberts A, Brindle P, Meinkoth J, Feramisco J, Deng T, Karin M, Shenolikar S, Montminy M (1992) Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70(1):105–113. doi:10.1016/0092-8674(92)90537-M

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267. doi:10.1038/85109

    Article  CAS  PubMed  Google Scholar 

  • Iguchi-Ariga SM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3(5):612–619

    Article  CAS  PubMed  Google Scholar 

  • Impey S, Wayman G, Wu Z, Storm DR (1994) Type I adenylyl cyclase functions as a coincidence detector for control of cyclic AMP response element-mediated transcription: synergistic regulation of transcription by Ca2+ and isoproterenol. Mol Cell Biol 14(12):8272–8281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16(5):973–982

    Article  CAS  PubMed  Google Scholar 

  • Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21(4):869–883

    Article  CAS  PubMed  Google Scholar 

  • Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119(7):1041–1054. doi:10.1016/j.cell.2004.10.032

    CAS  PubMed  Google Scholar 

  • Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham JM, Orth AP, Miraglia L, Meltzer J, Garza D, Chirn GW, McWhinnie E, Cohen D, Skelton J, Terry R, Yu Y, Bodian D, Buxton FP, Zhu J, Song C, Labow MA (2003) Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A 100(21):12147–12152. doi:10.1073/pnas.1932773100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157(1):163–186. doi:10.1016/j.cell.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  • Kornhauser JM, Nelson DE, Mayo KE, Takahashi JS (1990) Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Kornhauser JM, Cowan CW, Shaywitz AJ, Dolmetsch RE, Griffith EC, Hu LS, Haddad C, Xia Z, Greenberg ME (2002) CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34(2):221–233

    Article  CAS  PubMed  Google Scholar 

  • Kovacs KA, Steullet P, Steinmann M, Do KQ, Magistretti PJ, Halfon O, Cardinaux JR (2007) TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A 104(11):4700–4705. doi:10.1073/pnas.0607524104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamarre-Vincent N, Hsieh-Wilson LC (2003) Dynamic glycosylation of the transcription factor CREB: a potential role in gene regulation. J Am Chem Soc 125(22):6612–6613. doi:10.1021/ja028200t

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Butcher GQ, Hoyt KR, Impey S, Obrietan K (2005) Activity-dependent neuroprotection and cAMP response element-binding protein (CREB): kinase coupling, stimulus intensity, and temporal regulation of CREB phosphorylation at serine 133. J Neurosci 25(5):1137–1148. doi:10.1523/jneurosci.4288-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang C, Takemori H, Zhou Y, Xiong ZQ (2009) TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci 29(8):2334–2343. doi:10.1523/jneurosci.2296-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Liu F-C, Graybiel AM (1996) Spatiotemporal dynamics of CREB phosphorylation: transient versus sustained phosphorylation in the developing striatum. Neuron 17(6):1133–1144. doi:10.1016/S0896-6273(00)80245-7

    Article  CAS  PubMed  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623. doi:10.1016/S0896-6273(02)00828-0

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews RP, Guthrie CR, Wailes LM, Zhao X, Means AR, McKnight GS (1994) Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol 14(9):6107–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599–609. doi:10.1038/35085068

    Article  CAS  PubMed  Google Scholar 

  • Mayr BM, Canettieri G, Montminy MR (2001) Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci U S A 98(19):10936–10941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael LF, Asahara H, Shulman AI, Kraus WL, Montminy M (2000) The phosphorylation status of a cyclic AMP-responsive activator is modulated via a chromatin-dependent mechanism. Mol Cell Biol 20(5):1596–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234(4781):1249–1254

    Article  CAS  PubMed  Google Scholar 

  • Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328(6126):175–178. doi:10.1038/328175a0

    Article  CAS  PubMed  Google Scholar 

  • Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A 83(18):6682–6686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obrietan K, Impey S, Storm DR (1998) Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci 1(8):693–700. doi:10.1038/3695

    Article  CAS  PubMed  Google Scholar 

  • Parker D, Ferreri K, Nakajima T, LaMorte VJ, Evans R, Koerber SC, Hoeger C, Montminy MR (1996) Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol Cell Biol 16(2):694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn PG (1993) Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J Biol Chem 268(23):16999–17009

    CAS  PubMed  Google Scholar 

  • Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63(6):803–817. doi:10.1016/j.neuron.2009.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates JR 3rd, Montminy M (2007) Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J 26(12):2880–2889. doi:10.1038/sj.emboj.7601715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12(6):1207–1221

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SS, Spitzer NC (2011) Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol 3(10):a004259. doi:10.1101/cshperspect.a004259

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116(1):1–9. doi:10.1111/j.1471-4159.2010.07080.x

    Article  CAS  PubMed  Google Scholar 

  • Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR 3rd, Takemori H, Okamoto M, Montminy M (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119(1):61–74. doi:10.1016/j.cell.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  • Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. doi:10.1146/annurev.biochem.68.1.821

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4(4):571–582

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252(5011):1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444(7120):707–712. doi:10.1038/nature05300

    Article  CAS  PubMed  Google Scholar 

  • Stemmer PM, Wang X, Krinks MH, Klee CB (1995) Factors responsible for the Ca2+-dependent inactivation of calcineurin in brain. FEBS Lett 374(2):237–240. doi:10.1016/0014-5793(95)01095-V

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Enslen H, Myung PS, Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8(21):2527–2539

    Article  CAS  PubMed  Google Scholar 

  • Wadzinski BE, Wheat WH, Jaspers S, Peruski LF Jr, Lickteig RL, Johnson GL, Klemm DJ (1993) Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol 13(5):2822–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner BL, Bauer A, Schutz G, Montminy M (2000) Stimulus-specific interaction between activator-coactivator cognates revealed with a novel complex-specific antiserum. J Biol Chem 275(12):8263–8266

    Article  CAS  PubMed  Google Scholar 

  • Wu X, McMurray CT (2001) Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem 276(3):1735–1741. doi:10.1074/jbc.M006727200

    Article  CAS  PubMed  Google Scholar 

  • Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 98(5):2808–2813. doi:10.1073/pnas.051634198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273(5277):959–963

    Article  CAS  PubMed  Google Scholar 

  • Xue ZC, Wang C, Wang QW, Zhang JF (2015) CREB-regulated transcription coactivator 1: important roles in neurodegenerative disorders. Sheng Li Xue Bao 67(2):155–162

    CAS  PubMed  Google Scholar 

  • Yao H, Peng F, Fan Y, Zhu X, Hu G, Buch SJ (2009) TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway. Cell Death Differ 16(12):1681–1693. doi:10.1038/cdd.2009.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102(12):4459–4464. doi:10.1073/pnas.0501076102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wu H, Li S, Chen Q, Cheng XW, Zheng J, Takemori H, Xiong ZQ (2006) Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS One 1:e16. doi:10.1371/journal.pone.0000016

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the laboratory has been supported by the Basil O’Connor Starter Scholar Research Award Grant 5-FY09-131 from the March of Dimes Foundation, Klingenstein Foundation Award in Neuroscience, NSF 1120796, NIH-NINDS R01NS073055 and Shriners Hospital for Children 86500-NCA and 85220-NCA grants to LNB and Shriners Hospital for Children Fellowship, Brain and Behavior foundation NARSAD grant #25356, IMERA grant and fellowship with the support of INSERM / Labex RFIEA / ANR (Investissements d'avenir), and Prestige / Marie Curie fellowship #PRESTIGE-2016-3-0025 to YHB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesser H. Belgacem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Belgacem, Y.H., Borodinsky, L.N. (2017). CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function. In: von Bernhardi, R., Eugenín, J., Muller, K. (eds) The Plastic Brain. Advances in Experimental Medicine and Biology, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-319-62817-2_2

Download citation

Publish with us

Policies and ethics