Skip to main content

Abstract

Fabry-Perot Cavity Antennas (FPAs) are a type of highly directive planar antennas that offer a promising alternative to standard planar microstrip patch arrays or waveguide slot array antennas. They offer significant advantages in terms of low fabrication complexity, particularly at mm wave frequencies, high radiation efficiency, and good radiation pattern performance. These advantages, in conjunction with a renewed interest in periodic surfaces and meta-surfaces, led to a reinvigoration of international research on this antenna type. This chapter reports recent advances on the design and implementation of FPAs at mm-wave bands. The main concept of FPAs, their operating principles and analysis approaches are briefly introduced. The basic types of FPAs are summarized following a historical account of various implementations until recent years. The main body of this chapter provides an overview of recent designs with a main focus on mm-wave bands and the advantages of the reported antennas for high-frequency implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A.P. Feresidis, J.C. Vardaxoglou, High-gain planar antenna using optimized partially reflective surfaces. IEE Proc. Microw. Antennas Propag. 148(6) (2001)

    Article  Google Scholar 

  2. G.V. Trentini, Partially reflecting sheet array. IRE Trans. Antennas Propag. AP-4, 666–671 (1956)

    Article  Google Scholar 

  3. D.R. Jackson, A.A. Oliner, A. Ip, Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans. Antennas Propag. 41, 344–348 (1993)

    Article  Google Scholar 

  4. D.R. Jackson, N.G. Alexopoulos, Gain enhancement methods for printed circuit antennas. IEEE Trans. Antennas Propag. 33, 976–987 (1985)

    Article  Google Scholar 

  5. J.R James, S.J.A Kinany, P.D. Peel, G. Andrasic, Leaky-wave multiple dichroic beamformers. Electron. Lett. 25, 1209–1211 (1989)

    Article  Google Scholar 

  6. R. Sauleau, P. Coquet, T. Matsui, J.-P. Daniel, A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors. IEEE Trans. Antennas Propag. 51(11), 3171–3175 (2003)

    Article  Google Scholar 

  7. R. Sauleau, Ph Coquet, D. Thouroude, J.-P. Daniel, Beam focusing using 60-GHz Fabry-Perot resonators with uniform and non-uniform metal grids. Electron. Letters 39(4), 341–342 (2003)

    Article  Google Scholar 

  8. S.A. Hosseini, F. Capolino, F.D. Flaviis, A 44 GHz single-feed Fabry-Perot cavity antenna designed and fabricated on quartz, in IEEE Antennas and Propagation Society (AP-S) International Symposium, pp. 1285–1288, Spokane, Washington, USA, July 3–8, 2011

    Google Scholar 

  9. S.A. Hosseini, F. Capolino, F. De Flaviis, Design of a single feed all-metal 63 GHz Fabry-Perot cavity antenna using a TL and a wideband circuit model (IEEE Int. Symp. Antennas Propag., Charleston, SC, 2009)

    Book  Google Scholar 

  10. S.A. Hosseini, F. De Flaviis, F. Capolino, A highly-efficient single-feed planar Fabry-Pérot cavity antenna for 60 GHz technology, in IEEE International Symposium on Antennas Propagation, Chicago, IL, USA, July 2012

    Google Scholar 

  11. K. Konstantinidis, A.P. Feresidis, P.S. Hall, M.J. Lancaster, Design of Fabry-Perot cavity antenna at 94 GHz, in Antennas and Propagation Conference (LAPC), 2012 Loughborough, pp. 1–4, 12–13 November 2012

    Google Scholar 

  12. S.J. Franson, R.W. Ziolkowski, Gigabit per second data transfer in high-gain metamaterial structures at 60 GHz. IEEE Trans. Antennas Propag. 57, 2913–2925 (2009)

    Article  Google Scholar 

  13. N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, H. Legay, A metallic Fabry-Perot directive antenna. IEEE Trans. Antennas Propag. 54(1), 220–224 (2006)

    Article  Google Scholar 

  14. R. Gardelli, M. Albani, F. Capolino, Gain enhancement of a V-band antenna using a Fabry-Pérot Cavity with a self-sustained all-metal cap with FSS. IEEE Trans. Antennas Propag. 63(3) (2015)

    Google Scholar 

  15. K. Konstantinidis, A.P. Feresidis, M.J. Lancaster, P.S. Hall, Micromachined terahertz Fabry-Perot cavity highly directive antennas. IET Microw. Antennas Propag. 9(13), 1436–1443 (2015)

    Article  Google Scholar 

  16. H. Ostner, E. Schmidhammer, J. Detlefsen, D.R. Jackson, Radiation from dielectric leaky-wave antennas with circular and rectangular apertures. Electromagnetics 17, 505–535 (1997)

    Article  Google Scholar 

  17. A.R. Weily, L. Horvath, K.P. Esselle, B.C. Sanders, T.S. Bird, A planar resonator antenna based on a woodpile EBG material. IEEE Trans. Antennas Propag. 53(1), 216–223 (2005)

    Article  Google Scholar 

  18. Y. Lee, X. Lu, Y. Hao, S. Yang, J.R.G. Evans, C.G. Parini, Low-profile directive millimetre wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures. IEEE Trans. Antennas Propag. 57(10), 2893–2903 (2009)

    Article  Google Scholar 

  19. H.Y. Yang, N.G. Alexopoulos, Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag. 35, 860–863 (1987)

    Article  Google Scholar 

  20. T. Zhao, D.R. Jackson, J.T. Williams, H.-Y.D. Yang, A.A. Oliner, 2-D periodic leaky-wave antennas-part I: metal patch design. IEEE Trans. Antennas Propag. 53(11), 3505–3514 (2005)

    Article  Google Scholar 

  21. T. Zhao, D.R. Jackson, J.T. Williams, H.-Y.D. Yang, A.A. Oliner, 2-D periodic leaky-wave antennas-part II: slot design. IEEE Trans. Antennas Propag. 53(11), 3515–3524 (2005)

    Article  Google Scholar 

  22. C. Mateo-Segura, G. Goussetis, A.P. Feresidis, Sub-wavelength profile 2-D leaky-wave antennas with two periodic layers. IEEE Trans. Antennas Propag. 59(2), 416–424 (2011)

    Article  Google Scholar 

  23. C. Mateo-Segura, A.P. Feresidis, G. Goussetis, Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces. IEEE Trans. Antennas Propag. 62(2), 586–593 (2014)

    Article  Google Scholar 

  24. S. Maci, M. Caiazzo, A. Cucini, M. Casaletti, A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE Trans. Antennas Propag. 53(1), 70–81 (2005)

    Article  Google Scholar 

  25. P. Kosmas, A.P. Feresidis, G. Goussetis, Periodic FDTD analysis of a 2-D leaky-wave planar antenna based on dipole frequency selective surfaces. IEEE Trans. Antennas Propag. 55(7), 2006–2012 (2007)

    Article  Google Scholar 

  26. J.R. Kelly, T. Kokkinos, A.P. Feresidis, Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas. IEEE Trans. Antennas Propag. 56(9), 2817–2825 (2008)

    Article  Google Scholar 

  27. T. Kokkinos, C.D. Sarris, G.V. Eleftheriades, Periodic FDTD analysis of leaky-wave structures and applications to the analysis of negative-refractive-index leaky-wave antennas. IEEE Trans. Microw. Theory Techn. 54(4), 1619–1630 (2006)

    Article  Google Scholar 

  28. T. Kokkinos, C.D. Sarris, G.V. Eleftheriades, Periodic finite-difference time-domain analysis of loaded transmission-line negative-refractive-index metamaterials. IEEE Trans. Microwave Theory Tech. 53(4), 1488–1495 (2005)

    Article  Google Scholar 

  29. D. Sievenpiper, High-impedance electromagnetic surfaces. Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999

    Google Scholar 

  30. D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopoulos, E. Yablonovitch, High impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999)

    Article  Google Scholar 

  31. S. Wang, A.P. Feresidis, G. Goussetis, J.C. Vardaxoglou, Low-profile resonant cavity antenna with artificial magnetic conductor ground plane. Electron. Lett. 40(7), 405–406 (2004)

    Article  Google Scholar 

  32. A.P. Feresidis, G. Goussetis, S. Wang, J.C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag. 53(1), 209–215 (2005)

    Article  Google Scholar 

  33. J.R. Kelly, T. Kokkinos, A.P. Feresidis, Analysis and design of sub-wavelength resonant cavity type 2-d leaky-wave antennas. IEEE Trans. Antennas Propag. 56(9), 2817–2825 (2008)

    Article  Google Scholar 

  34. R. Orr, G. Goussetis, V. Fusco, Design method for circularly polarized Fabry-Perot cavity antennas. IEEE Trans. Antennas Propag. 62(1), 19–26 (2014)

    Article  Google Scholar 

  35. L. Zhou, H. Li, Y. Qin, Z. Wei, C.T. Chan, Directive emissions from subwavelength metamaterial-based cavities. Appl. Phys. Lett. 86, 1011011 (2005)

    Article  Google Scholar 

  36. A. Ourir, A. de Lustrac, and J.-M. Lourtioz, All-metamaterial-based subwavelength cavities for ultrathin directive antennas. Appl. Phys. Lett. 88(8), 84103-1–84103-3 (2006)

    Article  Google Scholar 

  37. K. Konstantinidis, A. Feresidis, P. Hall, Dual subwavelength Fabry-Perot cavities for broadband highly directive antennas. IEEE Antennas Wirel. Propag. Lett. 13, 1184–1186 (2014)

    Article  Google Scholar 

  38. K. Konstantinidis, A.P. Feresidis, P.S. Hall, Broadband sub-wavelength profile high-gain antennas based on multi-layer metasurfaces. IEEE Trans. Antennas Propag. 63(1), 423–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. A.P. Feresidis, J.C. Vardaxoglou, A broadband high-gain resonant cavity antenna with single feed, in Proceedings of EuCAP, Nice, France, 2006

    Google Scholar 

  40. K. Konstantinidis, A.P. Feresidis, P.S. Hall, multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Trans. Antennas Propag. 62(7), 3474–3481 (2014)

    Article  Google Scholar 

  41. A. Zeb, Y. Ge, K.P. Esselle, Z. Sun, M.E. Tobar, A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient. IEEE Trans. Antennas Propag. 60(10), 4522–4529 (2012)

    Article  Google Scholar 

  42. Y. Ge, K.P. Esselle, T.S. Bird, The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. Antennas Propag. 60(2), 743–750 (2012)

    Article  Google Scholar 

  43. M. Al-Tarifi, D. Anagnostou, A. Amert, K. Whites, Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates. IEEE Trans. Antennas Propag. 61, 1898–1908 (2013)

    Article  Google Scholar 

  44. R. Sauleau, Ph Coquet, T. Matsui, Low-profile directive quasi-planar antennas based on millimeter wave Fabry-Perot cavities. IEE Proc. Microw. Antennas Propag. 150(4), 274–278 (2003)

    Article  Google Scholar 

  45. R. Gardelli, M. Albani, F. Capolino, Array thinning by using antennas in a Fabry–Perot cavity for gain enhancement. IEEE Trans. Antennas Propag. 54(7) (2006)

    Article  Google Scholar 

  46. K. Konstantinidis, A.P. Feresidis, P.S. Hall, Dual-slot feeding technique for broadband Fabry–Perot cavity antennas. IET Microw. Antennas Propag. 9(1) (2015)

    Article  Google Scholar 

  47. J.C. Iriarte, I. Ederra, R. Gonzalo, Y. Brand, A. Fourmault, Y. Demers, L. Salgetti-Drioli, P. de Maagt, EBG superstrate array configuration for the WAAS space segment. IEEE Trans. Antennas Propag. 57(1), 81–93 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Feresidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Feresidis, A., Konstantinidis, K., Gardner, P. (2018). Fabry-Perot Cavity Antennas. In: Boriskin, A., Sauleau, R. (eds) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62773-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62773-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62772-4

  • Online ISBN: 978-3-319-62773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics