Skip to main content

Abstract

The multiscale problem that a modeller in biology is presented with, trying to provide a systematic description of many agents, their properties, their internal dynamics and interactions, is daunting. On the other hand, biology provides a natural scale, with individual cells as agents. In agent-based computation, variables representing cell population sizes may be evaluated by counting cells of various types, but the governing dynamical rules are laid down one event at a time (J Theor Biol 231(3):357–376, 2004; CPT: Pharmacometrics Syst Pharmacol 4(11):615–629, 2015). Every cell is an individual, with its own set of attributes (state of activation, surface molecule profile, spatial location, for example). Populations of cells decrease or increase because individual cells die or divide. Here, by way of a tutorial on agent-based immune system modelling, we implement a model of the behaviour of the set of T cells in a body—numbering more than 1011 in an adult human, and more than 107 in an adult mouse (Ann Rev Immunol 28:275–294, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Segovia-Juarez, S. Ganguli, D. Kirschner, Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231(3), 357–376 (2004)

    Google Scholar 

  2. J. Cosgrove, J. Butler, K. Alden, M. Read, V. Kumar, L. Cucurull-Sanchez, J. Timmis, M Coles, Agent-based modeling in systems pharmacology. CPT: Pharmacometrics Syst. Pharmacol. 4(11), 615–629 (2015)

    Article  Google Scholar 

  3. M.K. Jenkins, H.H. Chu, J.B. McLachlan, J.J. Moon, On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Ann. Rev. Immunol. 28, 275–294 (2010)

    Article  Google Scholar 

  4. A.W. Goldrath, M.J. Bevan, Selecting and maintaining a diverse T cell repertoire. Nature 402, 255–262 (1999)

    Article  Google Scholar 

  5. P.D. Hodgkin, Concepts for the development of a quantitative theory of clonal selection and class regulation using lessons from the original. Immunol. Cell Biol. 86(2), 161–165 (2008)

    Article  Google Scholar 

  6. F.M. Burnet, A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J. Clin. 26(2), 119–121(1976)

    Google Scholar 

  7. E.D. Hawkins, J.F. Markham, L.P. McGuinness, P.D. Hodgkin, single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc. Natl. Acad. Sci. 106(32), 13457–13462 (2009)

    Google Scholar 

  8. C. Gerlach, J.C. Rohr, L. Perié, N. van Rooij, J.W.J. van Heijst, A. Velds, J. Urbanus, S.H. Naik, H. Jacobs, J.B. Beltman et al., Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340(6132), 635–639 (2013)

    Article  Google Scholar 

  9. A. Ahmed, D. Nandi, T cell activation and function: role of signal strength, in Mathematical Models and Immune Cell Biology, ed. by C. Molina-París, G. Lythe (Springer, London, 2011), pp. 77–100

    Google Scholar 

  10. F. Sallusto, D. Lenig, R. Förster, M. Lipp, A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 402, 34–38 (1999)

    Article  Google Scholar 

  11. J.J.C. Thome, B. Grinshpun, B.V. Kumar, M. Kubota, Y. Ohmura, H. Lerner, G.D. Sempowski, Y. Shen, D.L. Farber, Long-term maintenance of human naïve t cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 1(6), eaah6506 (2016)

    Google Scholar 

  12. A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114(1), 81–125 (1993)

    Article  MATH  Google Scholar 

  13. S.M. Ciupe, B.H. Devlin, M.L. Markert, T.B. Kepler, The dynamics of T-cell receptor repertoire diversity following thymus transplantation for digeorge anomaly. PLoS Comput. Biol. 5(6), 1–13 (2009)

    Article  Google Scholar 

  14. G. Lythe, R.E. Callard, R.L. Hoare, C. Molina-París, How many TCR clonotypes does a body maintain? J. Theor. Biol. 389, 214–224 (2016)

    Article  MATH  Google Scholar 

  15. R. Varma, TCR triggering by the pMHC complex: valency, affinity, and dynamics. Sci. STKE 1(19), pe21 (2008)

    Google Scholar 

  16. M.S. Kuhns, M.M. Davis, TCR signaling emerges from the sum of many parts. Front. Immunol. 3, 1–13 (2012)

    Article  Google Scholar 

  17. J.F. Allard, O. Dushek, D. Coombs, P. Anton van der Merwe, Mechanical modulation of receptor–ligand interactions at cell–cell interfaces. Biophys. J. 102(6), 1265–1273 (2012)

    Article  Google Scholar 

  18. S. Tisue, U. Wilensky, Netlogo: a simple environment for modeling complexity, in International Conference on Complex Systems, Boston, MA, vol. 21 (2004), pp. 16–21

    Google Scholar 

  19. C. Macal, M. North, Introductory tutorial: agent-based modeling and simulation, in Proceedings of the 2014 Winter Simulation Conference (IEEE Press, New York, 2014), pp. 6–20

    Book  Google Scholar 

  20. D. Morley, K. Myers, The SPARK agent framework, in Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 714–721 (IEEE Computer Society, Washington, 2004)

    Google Scholar 

  21. G. An, Q. Mi, J. Dutta-Moscato, Y. Vodovotz, Agent-based models in translational systems biology. Wiley Interdiscip. Rev.: Syst. Biol. Med. 1(2), 159–171 (2009)

    Google Scholar 

  22. P. Kisielow, H. Sia Teh, H. Blüthmann, H. von Boehmer, Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335(6192), 730–733 (1988)

    Article  Google Scholar 

  23. S.C. Jameson, K.A. Hogquist, M.J. Bevan, Positive selection of thymocytes. Ann. Rev. Immunol. 13(1), 93–126 (1995)

    Article  Google Scholar 

  24. A. Singer, S. Adoro, J.-H. Park, Lineage fate and intense debate: myths, models and mechanisms of CD4-versus CD8-lineage choice. Nat. Rev. Immunol. 8(10), 788–801 (2008)

    Article  Google Scholar 

  25. M. Sawicka, G.L. Stritesky, J. Reynolds, N. Abourashchi, G. Lythe, C. Molina-París, K.A. Hogquist, From pre-DP, post-DP, SP4, and SP8 thymocyte cell counts to a dynamical model of cortical and medullary selection. Front. Immunol. 5, 1–14 (2014)

    Article  Google Scholar 

  26. T. Hogan, G. Gossel, A.J. Yates, B. Seddon, Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. Proc. Natl. Acad. Sci. 112(50), E6917–E6926 (2015)

    Article  Google Scholar 

  27. T.G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)

    Article  Google Scholar 

  28. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  29. I. den Braber, T. Mugwagwa, N. Vrisekoop, L. Westera, R. Mögling, A. Bregje de Boer, N. Willems, E.H.R. Schrijver, G. Spierenburg, K. Gaiser, E. Mul, S.A. Otto, A.F.C. Ruiter, M.T. Ackermans, F. Miedema, J.A.M. Borghans, R.J. de Boer, K. Tesselaar, Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2), 288–297 (2012)

    Article  Google Scholar 

  30. V.V. Ganusov, R.J. De Boer, Do most lymphocytes in humans really reside in the gut? Trends Immunol. 28(12), 514–518 (2007)

    Article  Google Scholar 

  31. V.V. Ganusov, J.A.M. Borghans, R.J. De Boer, Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations. PLoS Comput. Biol. 6(2), e1000666 (2010)

    Google Scholar 

  32. J.J.C. Thome, N. Yudanin, Y. Ohmura, M. Kubota, B. Grinshpun, T. Sathaliyawala, T. Kato, H. Lerner, Y. Shen, D.L. Farber, Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159(4), 814–828 (2014)

    Article  Google Scholar 

  33. G. Nigel Gilbert, Agent-Based Models (Sage, Beverley Hills, 2008)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for discussions with, and data provided by, Thea Hogan, Ben Seddon and Andy Yates. GDL thanks the Isaac Newton Institute programme Stochastic Dynamical Systems in Biology: Numerical Methods and Applications. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 317040 (QuanTI). This work has been partially supported by grants FIS2013-47949-C2-2-P (Spain), PIRSES-GA-2012-317893 (7th FP, EU), and BIOCAPS (FP7/REGPOT-2012- 2013.1, EC) under grant agreement no. 316265. MC thanks the Salvador de Madariaga programme through grant PRX16/00287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant Lythe .

Editor information

Editors and Affiliations

Appendix: Mouse T Cell Repertoire Lifetime Code

Appendix: Mouse T Cell Repertoire Lifetime Code

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castro, M., Lythe, G., Molina-París, C. (2017). The T Cells in an Ageing Virtual Mouse. In: Holcman, D. (eds) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-62627-7_6

Download citation

Publish with us

Policies and ethics