Skip to main content
  • 1501 Accesses

Abstract

An axon is a long thin projection of a neuron that allows for rapid electrochemical communications with other cells over long distances. Axonal transport refers to the stochastic, bidirectional movement of organelles and proteins along cytoskeletal polymers inside an axon, powered by molecular motor proteins. The movement from the cell body to the axon terminal is called anterograde transport and the movement in the opposite direction is called retrograde transport. Axonal transport is a vital process for the axon to survive and maintain its regular shape. Mathematical models have been developed to help understand how cargoes are transported inside an axon and how impairment of axonal transport affects cargo distribution. In this chapter, we review recent mathematical models of axonal transport and discuss open problems in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G.L. Van den Heuvel, M.P. de Graaff, C. Dekker, Microtubule curvatures under perpendicular electric forces reveal a low persistence length. Proc. Natl. Acad. Sci. U. S. A. 105(23), 7941–7946 (2008)

    Article  Google Scholar 

  2. S. Tsukita, H. Ishikawa, The cytoskeleton in myelinated axons: serial section study. Biomed. Res. 2, 424–437 (1981)

    Google Scholar 

  3. B.J. Schnapp, T.S. Reese, Cytoplasmic structure in rapid frozen axons. J. Cell Biol. 94, 667–679 (1982)

    Article  Google Scholar 

  4. N. Hirokawa, Axonal transport and the cytoskeleton. Curr. Opin. Neurobiol. 3(5), 724–731 (1993)

    Article  Google Scholar 

  5. A. Brown, Axonal transport, in Neuroscience in the 21st Century (Springer, Berlin, 2013)

    Google Scholar 

  6. N. Hirokawa, R. Takemura, Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6(3), 201–214 (2005)

    Article  Google Scholar 

  7. F. Gittes, B. Mickey, J. Nettleton, J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–934 (1993)

    Article  Google Scholar 

  8. H. Isambert, P. Venier, A.C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, M.F. Carlier, Flexibility of actin filaments derived from thermal fluctuations. effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J. Biol. Chem. 270(19), 11437–11444 (1995)

    Google Scholar 

  9. K. Xu, G. Zhong, X. Zhuang, Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118), 452–456 (2013)

    Article  Google Scholar 

  10. E.L. Bearer, T.S. Reese, Association of actin filaments with axonal microtubule tracts. J. Neurocytol. 28(2), 85–98 (1999)

    Article  Google Scholar 

  11. P.J. Hollenbeck, W.M. Saxton, The axonal transport of mitochondria. J. Cell Sci. 118(Pt 23), 5411–5419 (2005)

    Article  Google Scholar 

  12. R. Beck, J. Deek, M. C. Choi, T. Ikawa, O. Watanabe, E. Frey, P. Pincus, C.R. Safinya, Unconventional salt trend from soft to stiff in single neurofilament biopolymers. Langmuir 26(24), 18595–18599 (2010)

    Article  Google Scholar 

  13. O.I. Wagner, S. Rammensee, N. Korde, Q. Wen, J.-F. Leterrier, P.A. Janmey, Softness, strength and self-repair in intermediate filament networks. Exp. Cell Res. 313(10), 2228–2235 (2007)

    Article  Google Scholar 

  14. R. Perrot, P. Lonchampt, A.C. Peterson, J. Eyer, Axonal neurofilaments control multiple fiber properties but do not influence structure or spacing of nodes of Ranvier. J. Neurosci. 27(36), 9573–9584 (2007)

    Article  Google Scholar 

  15. R.L. Friede, T. Samorajski, Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167(4), 379–387 (1970)

    Article  Google Scholar 

  16. L. Wang, C.L. Ho, D. Sun, R.K. Liem, A. Brown, Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2(3), 137–141 (2000)

    Article  Google Scholar 

  17. N. Trivedi, P. Jung, A. Brown, Neurofilaments switch between distinct mobile and stationary states during their transport along axons. J. Neurosci. 27(3), 507–516 (2007)

    Article  Google Scholar 

  18. E. Chevalier-Larsen, E.L.F. Holzbaur, Axonal transport and neurodegenerative disease. Biochim. Biophys. Acta 1762(11–12), 1094–1108 (2006)

    Article  Google Scholar 

  19. K.J. De Vos, A.J. Grierson, S. Ackerley, C.C.J. Miller, Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008)

    Article  Google Scholar 

  20. S. Millecamps, J.-P. Julien, Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14(3), 161–176 (2013)

    Article  Google Scholar 

  21. C. Zhao, J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H.W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, N. Hirokawa, Charcot-Marie-tooth disease type 2A caused by mutation in a microtubule motor kIF1Bbeta. Cell 105(5), 587–597 (2001)

    Article  Google Scholar 

  22. L. Wang, A. Brown, A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport. Mol. Neurodegener. 5, 52 (2010)

    Article  Google Scholar 

  23. M.E. MacDonald, C.M. Ambrose, M.P. Duyao, R.H. Myers, C. Lin, L. Srinidhi, G. Barnes, S.A. Taylor, M. James, N. Groot et al., A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6), 971–983 (1993)

    Article  Google Scholar 

  24. M. Katsuno, H. Adachi, M. Minamiyama, M. Waza, K. Tokui, H. Banno, K.e Suzuki, Y. Onoda, F. Tanaka, M. Doyu, G. Sobue, Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration. J. Neurosci. 26(47), 12106–12117 (2006)

    Google Scholar 

  25. I. Puls, C. Jonnakuty, B.H. LaMonte, E.L.F. Holzbaur, M. Tokito, E. Mann, M.K. Floeter, K. Bidus, D. Drayna, S.J. Oh, R.H. Brown Jr., C.L. Ludlow, K.H. Fischbeck, Mutant dynactin in motor neuron disease. Nat. Genet. 33(4), 455–456 (2003)

    Article  Google Scholar 

  26. G.M. Fabrizi, T. Cavallaro, C. Angiari, I. Cabrini, F. Taioli, G. Malerba, L. Bertolasi, N. Rizzuto, Charcot-Marie-tooth disease type 2E, a disorder of the cytoskeleton. Brain 130(Pt 2), 394–403 (2007)

    Article  Google Scholar 

  27. D.D. Tshala-Katumbay, V.S. Palmer, M.R. Lasarev, R.J. Kayton, M.I. Sabri, P.S. Spencer, Monocyclic and dicyclic hydrocarbons: structural requirements for proximal giant axonopathy. Acta Neuropathol. 112(3), 317–324 (2006)

    Article  Google Scholar 

  28. H.H. Goebel, P. Vogel, M. Gabriel, Neuropathologic and morphometric studies in hereditary motor and sensory neuropathy type II with neurofilament accumulation. Ital J. Neurol. Sci. 7(3), 325–332 (1986)

    Article  Google Scholar 

  29. A.L. Taratuto, G. Sevlever, M. Saccoliti, L. Caceres, M. Schultz, Giant axonal neuropathy (GAN): an immunohistochemical and ultrastructural study report of a Latin American case. Acta Neuropathol. 80(6), 680–683 (1990)

    Article  Google Scholar 

  30. M. Donaghy, R.H. King, P.K. Thomas, J.M. Workman, Abnormalities of the axonal cytoskeleton in giant axonal neuropathy. J. Neurocytol. 17(2), 197–208 (1988)

    Article  Google Scholar 

  31. I.R. Griffiths, I.D. Duncan, M. McCulloch, S. Carmichael, Further studies of the central nervous system in canine giant axonal neuropathy. Neuropathol. Appl. Neurobiol. 6(6), 421–432 (1980)

    Article  Google Scholar 

  32. R. S. Smith. The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J. Neurocytol. 9(1), 39–65 (1980)

    Article  Google Scholar 

  33. P.C. Bressloff, J.M. Newby, Stochastic models of intracellular transport. Rev. Mod. Phys. 85(1), 135 (2013)

    Google Scholar 

  34. D. Chowdhury, Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist’s perspective. Phys. Rep. 529(1), 1–197 (2013)

    Article  MathSciNet  Google Scholar 

  35. A. Brown, Slow axonal transport. New Encycl. Neurosci. 9, 1–9 (2009)

    Google Scholar 

  36. S.I. Rubinow, J.J. Blum, A theoretical approach to the analysis of axonal transport. Biophys. J. 30(1), 137–147 (1980)

    Article  Google Scholar 

  37. T. Takenaka, H. Gotoh, Simulation of axoplasmic transport. J. Theor. Biol. 107(4), 579–601 (1984)

    Article  Google Scholar 

  38. J.J. Blum, M.C. Reed, A model for fast axonal transport. Cell Motil. 5(6), 507–527 (1985)

    Article  Google Scholar 

  39. M.C. Reed, J.J. Blum, Theoretical analysis of radioactivity profiles during fast axonal transport: effects of deposition and turnover. Cell Motil. Cytoskeleton 6(6), 620–627 (1986)

    Article  Google Scholar 

  40. J.J. Blum, M.C. Reed, A model for slow axonal transport and its application to neurofilamentous neuropathies. Cell Motil. Cytoskeleton 12(1), 53–65 (1989)

    Article  Google Scholar 

  41. M.C. Reed, S. Venakides, J.J. Blum, Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Appl. Math. 50(1), 167–180 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Roy, P. Coffee, G. Smith, R.K. Liem, S.T. Brady, M.M. Black, Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20(18), 6849–6861 (2000)

    Google Scholar 

  43. G. Craciun, A. Brown, A. Friedman, A dynamical system model of neurofilament transport in axons. J. Theor. Biol. 237(3), 316–322 (2005)

    Article  MathSciNet  Google Scholar 

  44. A. Brown, L. Wang, P. Jung, Stochastic simulation of neurofilament transport in axons: the “stop-and-go” hypothesis. Mol. Biol. Cell 16(9), 4243–4255 (2005)

    Article  Google Scholar 

  45. P. Jung, A. Brown, Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Phys. Biol. 6(4), 046002 (2009)

    Google Scholar 

  46. Y. Li, P. Jung, A. Brown, Axonal transport of neurofilaments: a single population of intermittently moving polymers. J. Neurosci. 32(2), 746–758 (2012)

    Article  Google Scholar 

  47. Y. Li, A. Brown, P. Jung, Deciphering the axonal transport kinetics of neurofilaments using the fluorescence photoactivation pulse-escape method. Phys. Biol. 11(2), 026001 (2014)

    Google Scholar 

  48. P.C. Monsma, Y. Li, J.D. Fenn, P. Jung, A. Brown, Local regulation of neurofilament transport by myelinating cells. J. Neurosci. 34(8), 2979–2988 (2014)

    Article  Google Scholar 

  49. A. Friedman, G. Craciun, Approximate traveling waves in linear reaction-hyperbolic equations. SIAM J. Math. Anal. 38(3), 741–758 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Friedman, G. Craciun, A model of intracellular transport of particles in an axon. J. Math. Biol. 51(2), 217–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Friedman, B. Hu, Uniform convergence for approximate traveling waves in linear reaction–diffusion–hyperbolic systems. Arch. Ration. Mech. Anal. 186(2), 251–274 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Friedman, B. Hu, Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems. Indiana University Math. J. 56(5), 2133–2158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. E.A. Brooks, Probabilistic methods for a linear reaction-hyperbolic system with constant coefficients. Ann. Appl. Probab. 9(3), 719–731 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Popovic, S.A. McKinley, M.C. Reed, A stochastic compartmental model for fast axonal transport. SIAM J. Appl. Math. 71(4), 1531–1556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. P.C. Bressloff, Stochastic model of protein receptor trafficking prior to synaptogenesis. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3 Pt 1), 031910 (2006)

    Google Scholar 

  56. J.M. Newby, P.C. Bressloff, Directed intermittent search for a hidden target on a dendritic tree. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2 Pt 1), 021913 (2009)

    Google Scholar 

  57. J.M. Newby, P.C. Bressloff, Quasi-steady state reduction of molecular motor-based models of directed intermittent search. Bull. Math. Biol. 72(7), 1840–1866 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. P.C. Bressloff, J.M. Newby, Stochastic hybrid model of spontaneous dendritic NMDA spikes. Phys. Biol. 11(1), 016006 (2014)

    Google Scholar 

  59. R.L. Price, P. Paggi, R.J. Lasek, M.J. Katz, Neurofilaments are spaced randomly in the radial dimension of axons. J. Neurocytol. 17(1), 55–62 (1988)

    Article  Google Scholar 

  60. S.T. Hsieh, G.J. Kidd, T.O. Crawford, Z. Xu, W.M. Lin, B.D. Trapp, D.W. Cleveland, J.W. Griffin, Regional modulation of neurofilament organization by myelination in normal axons. J. Neurosci. 14(11 Pt 1), 6392–6401 (1994)

    Google Scholar 

  61. S.C. Papasozomenos, L. Autilio-Gambetti, P. Gambetti, Reorganization of axoplasmic organelles following beta, beta′-iminodipropionitrile administration. J. Cell Biol. 91(3 Pt 1), 866–871 (1981)

    Article  Google Scholar 

  62. S.C. Papasozomenos, M. Yoon, R. Crane, L. Autilio-Gambetti, P. Gambetti, Redistribution of proteins of fast axonal transport following administration of beta,beta′-iminodipropionitrile: a quantitative autoradiographic study. J. Cell Biol. 95(2 Pt 1), 672–675 (1982)

    Article  Google Scholar 

  63. J.W. Griffin, K.E. Fahnestock, D.L. Price, P.N. Hoffman, Microtubule-neurofilament segregation produced by beta, beta′-iminodipropionitrile: evidence for the association of fast axonal transport with microtubules. J. Neurosci. 3(3), 557–566 (1983)

    Google Scholar 

  64. J.W. Griffin, K.E. Fahnestock, D.L. Price, L.C. Cork, Cytoskeletal disorganization induced by local application of β,β′-iminodipropionitrile and 2,5-hexanedione. Ann. Neurol. 14, 55–61 (1983)

    Article  Google Scholar 

  65. J.W. Griffin, D.L. Price, P.N. Hoffman, Neurotoxic probes of the axonal cytoskeleton. Trends Neurosci. 6, 490–495 (1983)

    Article  Google Scholar 

  66. S.C. Papasozomenos, L.I. Binder, P.K. Bender, M.R. Payne, Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtubules and neurofilaments in normal and beta,beta′-iminodipropionitrile-treated axons. J. Cell Biol. 100(1), 74–85 (1985)

    Article  Google Scholar 

  67. N. Hirokawa, G.S. Bloom, R.B. Vallee, Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta′-iminodipropionitrile-intoxicated axon as a model system. J. Cell Biol. 101(1), 227–239 (1985)

    Article  Google Scholar 

  68. S.C. Papasozomenos, M.R. Payne, Actin immunoreactivity localizes with segregated microtubules and membranous organelles and in the subaxolemmal region in the beta,beta′-iminodipropionitrile axon. J. Neurosci. 6(12), 3483–3491 (1986)

    Google Scholar 

  69. R.G. Nagele, K.T. Bush, H.Y. Lee, A morphometric study of cytoskeletal reorganization in rat sciatic nerve axons following beta,beta′-iminodipropionitrile (IDPN) treatment. Neurosci. Lett. 92(3), 241–246 (1988)

    Article  Google Scholar 

  70. A. Bizzi, R.C. Crane, L. Autilio-Gambetti, P. Gambetti, Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport. J. Neurosci. 4(3), 722–731 (1984)

    Google Scholar 

  71. M.R. Gottfried, D.G. Graham, M. Morgan, H.W. Casey, J.S. Bus, The morphology of carbon disulfide neurotoxicity. Neurotoxicology 6(4), 89–96 (1985)

    Google Scholar 

  72. I. Jirmanová, E. Lukás, Ultrastructure of carbon disulphie neuropathy. Acta Neuropathol. 63(3), 255–263 (1984)

    Article  Google Scholar 

  73. Z. Sahenk, J.R. Mendell, Alterations in slow transport kinetics induced by estramustine phosphate, an agent binding to microtubule-associated proteins. J. Neurosci. Res. 32(4), 481–493 (1992)

    Article  Google Scholar 

  74. D.D. Tshala-Katumbay, V.S. Palmer, R.J. Kayton, M.I. Sabri, P.S. Spencer, A new murine model of giant proximal axonopathy. Acta Neuropathol. 109(4), 405–410 (2005)

    Article  Google Scholar 

  75. M.K. Lee, J.R. Marszalek, D.W. Cleveland, A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 13(4), 975–988 (1994)

    Article  Google Scholar 

  76. H. Selye, Lathyrism. Rev. Can. Biol. 16, 1–73 (1957)

    Google Scholar 

  77. J.L. Cadet, The iminodipropionitrile (IDPN)-induced dyskinetic syndrome: behavioral and biochemical pharmacology. Neurosci. Biobehav. Rev. 13(1), 39–45 (1989)

    Article  MathSciNet  Google Scholar 

  78. P.S. Spencer, H.H. Schaumburg, Lathyrism: a neurotoxic disease. Neurobehav. Toxicol. Teratol. 5(6), 625–629 (1983)

    Google Scholar 

  79. P.S. Spencer, C.N. Allen, G.E. Kisby, A.C. Ludolph, S.M. Ross, D.N. Roy, Lathyrism and western pacific amyotrophic lateral sclerosis: etiology of short and long latency motor system disorders. Adv. Neurol. 56, 287–299 (1991)

    Google Scholar 

  80. J. Llorens, C. Soler-Martín, B. Cutillas, S. Saldaña-Ruíz, Nervous and vestibular toxicities of acrylonitrile and iminodipropionitrile. Toxicol. Sci. 110(1), 244–245; Author reply 246–248 (2009)

    Google Scholar 

  81. J. Llorens, Toxic neurofilamentous axonopathies – accumulation of neurofilaments and axonal degeneration. J. Intern. Med. 273(5), 478–489 (2013)

    Article  Google Scholar 

  82. J.W. Griffin, P.N. Hoffman, A.W. Clark, P.T. Carroll, D.L. Price, Slow axonal transport of neurofilament proteins: impairment of beta,beta′-iminodipropionitrile administration. Science 202(4368), 633–635 (1978)

    Article  Google Scholar 

  83. C. Xue, B. Shtylla, A. Brown, A stochastic multiscale model that explains the segregation of axonal microtubules and neurofilaments in toxic neuropathies. PLoS Comput. Biol. 11(8), e1004406 (2015)

    Google Scholar 

  84. Q. Zhu, M. Lindenbaum, F. Levavasseur, H. Jacomy, J.P. Julien, Disruption of the NF-H gene increases axonal microtubule content and velocity of neurofilament transport: relief of axonopathy resulting from the toxin beta,beta′-iminodipropionitrile. J. Cell Biol. 143(1), 183–193 (1998)

    Article  Google Scholar 

  85. K. Visscher, M.J. Schnitzer, S.M. Block, Single kinesin molecules studied with a molecular force clamp. Nature 400(6740), 184–189 (1999)

    Article  Google Scholar 

  86. R.P. Erickson, Z. Jia, S.P. Gross, C.C. Yu, How molecular motors are arranged on a cargo is important for vesicular transport. PLoS Comput. Biol. 7(5), e1002032 (2011)

    Google Scholar 

  87. N. Hirokawa, K.K. Pfister, H. Yorifuji, M.C. Wagner, S.T. Brady, G.S. Bloom, Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56(5), 867–878 (1989)

    Article  Google Scholar 

  88. C.M. Coppin, J.T. Finer, J.A. Spudich, R.D. Vale, Measurement of the isometric force exerted by a single kinesin molecule. Biophys. J. 68(4 Suppl.), 242S–244S (1995)

    Google Scholar 

  89. F. Ziebert, M. Vershinin, S.P. Gross, I.S. Aranson, Collective alignment of polar filaments by molecular motors. Eur. Phys. J. E Soft Matter 28(4), 401–409 (2009)

    Article  Google Scholar 

  90. R.G. Cox, The motion of long slender bodies in a viscous fluid. Part 1. general theory. J. Fluid Mech. 44(Part 3), 790–810 (1970)

    Google Scholar 

  91. C. Brennen, H. Winet, Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9(1), 339–398 (1977)

    Article  MATH  Google Scholar 

  92. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448), 721–727 (1993)

    Article  Google Scholar 

  93. M.J. Schnitzer, S.M. Block, Kinesin hydrolyses one ATP per 8-nm step. Nature 388(6640), 386–390 (1997)

    Article  Google Scholar 

  94. A. Kunwar, M. Vershinin, J. Xu, S.P. Gross, Stepping, strain gating, and an unexpected force-velocity curve for multiple-motor-based transport. Curr. Biol. 18(16), 1173–1183 (2008)

    Article  Google Scholar 

  95. J. Kerssemakers, J. Howard, H. Hess, S. Diez, The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc. Natl. Acad. Sci. U. S. A. 103(43), 15812–15817 (2006)

    Article  Google Scholar 

  96. I.G Currie, Fundamental Mechanics of Fluids (CRC Press, Boca Raton, 2012)

    Google Scholar 

  97. R. Swaminathan, C.P. Hoang, A.S. Verkman, Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-s65t in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by US NSF DMS 1312966 and US NSF CAREER Award 1553637. CX was also supported by the Mathematical Biosciences Institute as a long-term visitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xue, C., Jameson, G. (2017). Recent Mathematical Models of Axonal Transport. In: Holcman, D. (eds) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-62627-7_12

Download citation

Publish with us

Policies and ethics