Skip to main content

Aggressive Variants of Thyroid Carcinoma

  • Chapter
  • First Online:
Atlas of Thyroid and Neuroendocrine Tumor Markers

Abstract

Most thyroid carcinomas (papillary and follicular thyroid carcinoma) are well-differentiated tumors characterized by an indolent clinical course and an excellent prognosis. However, certain histological variants have an aggressive course with a higher risk of distant metastases and tumor-related mortality compared to well-differentiated tumors. Indeed, the 2015 American Thyroid Association (ATA) Initial Risk Stratification System recommended to classify patients with aggressive variants of papillary thyroid carcinoma (e.g., tall-cell, hobnail variant, columnar-cell carcinoma) at ATA intermediate risk of disease recurrence and/or persistence. The present chapter will focus on the clinical characteristics, diagnosis, and therapy of thyroid cancers more aggressive than the classic well-differentiated tumors. The classification of the aggressive variants of thyroid tumors used in this chapter takes into consideration variants of the papillary thyroid carcinoma (tall-cell, columnar-cell, hobnail, solid, diffuse sclerosing), poorly differentiated thyroid carcinoma, and anaplastic thyroid carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. https://seer.cancer.gov/statfacts/html/thyro.html. Last access 22 February 2017.

  2. Silver CE, Owen RP, Rodrigo JP, et al. Aggressive variants of papillary thyroid carcinoma. Head Neck. 2011;33:1052–9.

    Article  PubMed  Google Scholar 

  3. Kazaure HS, Roman SA, Sosa JA. Aggressive variants of papillary thyroid cancer: incidence, characteristics and predictors of survival among 43,738 patients. Ann Surg Oncol. 2012;19:1874–80.

    Article  PubMed  Google Scholar 

  4. Roman S, Sosa JA. Aggressive variants of papillary thyroid cancer. Curr Opin Oncol. 2013;25:33–8.

    Article  PubMed  Google Scholar 

  5. Haugen BR, Alexander EK, Bible KC, et al. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2015;26:1–133.

    Article  Google Scholar 

  6. Ganly I, Ibrahimpasic T, Rivera M, et al. Prognostic implication of papillary thyroid carcinoma with tall cell features. Mod Pathol. 2012;25:144A.

    Google Scholar 

  7. Dettmer MS, Schmitt A, Steinert H, Moch H, Komminoth P, Perren A. Tall cell variant of papillary thyroid carcinoma- how many tall cells are needed? Mod Pathol. 2012;25:143A.

    Google Scholar 

  8. Michels JJ, Jacques M, Henry-Amar M, et al. Prevalence and prognostic significance of tall cell variant of papillary thyroid carcinoma. Hum Pathol. 2007;38:212–9.

    Article  PubMed  Google Scholar 

  9. Akslen LA, LiVolsi VA. Prognostic significance of histologic grading compared with subclassification of papillary thyroid carcinoma. Cancer. 2000;88:1902–8.

    Article  CAS  PubMed  Google Scholar 

  10. Falvo L, Giacomelli L, D'Andrea V, et al. Prognostic importance of sclerosing variant in papillary thyroid carcinoma. Am Surg. 2006;72:438–44.

    PubMed  Google Scholar 

  11. Morris LG, Shaha AR, Tuttle RM, et al. Tall-cell variant of papillary thyroid carcinoma: a matched-pair analysis of survival. Thyroid. 2010;20:153–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nikiforov YE, Ohori NP. Papillary carcinoma. In: Nikiforov YE, Biddinger PW, Thompson LDR, editors. Diagnostic Pathology and Molecular Genetics of the Thyroid. 1st ed. Philadelphia, PA: Lippincott; 2012. p. 183–262.

    Google Scholar 

  13. Machens A, Holzhausen HJ, Lautenschläger C, et al. The tall-cell variant of papillary thyroid carcinoma: a multivariate analysis of clinical risk factors. Langenbeck's Arch Surg. 2004;389:278–82.

    Article  Google Scholar 

  14. Chen JH, Faquin WC, Lloyd RV, et al. Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod Pathol. 2011;24:739–49.

    Article  CAS  PubMed  Google Scholar 

  15. Young SL, Yourha K, Sora J, et al. Cytologic, clinicopathologic, and molecular features of papillary thyroid carcinoma with prominent hobnail features: 10 case reports and systematic literature review. Int J Clin Exp Pathol. 2015;8:7988–97.

    Google Scholar 

  16. Ieni A, Barresi V, Cardia R, et al. The micropapillary/hobnail variant of papillary thyroid carcinoma: A review of series described in the literature compared to a series from one southern Italy pathology institution. Rev Endocr Metab Disord. 2017;8(13):22023–33. https://doi.org/10.1007/s11154-016-9398-4.

    Google Scholar 

  17. Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Sur Pathol. 2001;25:1478–84.

    Article  CAS  Google Scholar 

  18. Volante M, Collini P, Nikiforov Yuri E, et al. Poorly Differentiated Thyroid Carcinoma: The Turin Proposal for the Use of Uniform Diagnostic Criteria and an Algorithmic Diagnostic Approach. Am J Surg Pathol. 2007;31:1256–64.

    Article  PubMed  Google Scholar 

  19. Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from Chernobyl. Endocr Pathol. 2006;17:307–17.

    Article  CAS  PubMed  Google Scholar 

  20. Pillai S, Gopalan V, Smith RA, et al. Diffuse sclerosing variant of papillary thyroid carcinoma-an update of its clinicopathological features and molecular biology. Crit Rev Oncol Hematol. 2015;94:64–73.

    Article  PubMed  Google Scholar 

  21. Pezzi TA, Sandulache VC, Pezzi CM, et al. Treatment and survival of patients with insular thyroid carcinoma: 508 cases from the National Cancer Data Base. Head Neck. 2016;38:906–12.

    Article  PubMed  Google Scholar 

  22. Ahmadi S, Stang M, Jiang XS, et al. Hürthle cell carcinoma: current perspectives. Onco Targets Ther. 2016;9:6873–84.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Petric R, Gazic B, Besic N. Prognostic factors for disease-specific survival in 108 patients with Hürthle cell thyroid carcinoma: a single-institution experience. BMC Cancer. 2014;14:777. https://doi.org/10.1186/1471-2407-14-777.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lopez-Penabad L, Chiu AC, Hoff AO, et al. Prognostic factors in patients with Hürthle cell neoplasms of the thyroid. Cancer. 2003;97:1186–94.

    Article  PubMed  Google Scholar 

  25. Besic N, Schwarzbartl-Pevec A, Vidergar-Kralj B. Treatment and outcome of 32 patients with distant metastases of Hürthle cell thyroid carcinoma: a single-institution experience. BMC Cancer. 2016;16:162. https://doi.org/10.1186/s12885-016-2179-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nagaiah G, Hossain A, Mooney CJ, et al. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011;2011:542358.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smallridge RC, Ain KB, Asa SL, et al. American Thyroid Association Anaplastic Thyroid Cancer Guidelines Taskforce. Thyroid. 2012;22:1104–39.

    Article  PubMed  Google Scholar 

  28. Kebebew E, Greenspan FS, Clark OH, et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 2005;103:1330–5.

    Article  PubMed  Google Scholar 

  29. Edge SB, Byrd DR, Compton CC, et al. Thyroid cancer staging. In: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC Cancer Staging Manual. 7th ed. New York: Springer-Verlag; 2010. p. 59–64.

    Google Scholar 

  30. Spitzweg C, Heufelder AE, Morris JC. Thyroid iodine transport. Thyroid. 2000;10:321–30.

    Article  CAS  PubMed  Google Scholar 

  31. Dohán O, De la Vieja A, Paroder V, et al. The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance. Endocr Rev. 2003;24:48–77.

    Article  PubMed  Google Scholar 

  32. Wei S, Gao M, Zhao C, et al. Low expression of sodium iodide symporter expression in aggressive variants of papillary thyroid carcinoma. Int J Clin Oncol. 2014;19:800–4.

    Article  CAS  PubMed  Google Scholar 

  33. Pryma DA, Schöder H, Gönen M, et al. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hürthle cell thyroid cancer patients. J Nucl Med. 2006;47:1260–6.

    PubMed  Google Scholar 

  34. Jillard CL, Youngwirth L, Scheri RP, et al. Radioactive Iodine Treatment Is Associated with Improved Survival for Patients with Hürthle Cell Carcinoma. Thyroid. 2016;26:959–64.

    Article  PubMed  Google Scholar 

  35. Yen TC, Lin HD, Lee CH, et al. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hürthle cell carcinoma of the thyroid gland after total thyroidectomy: a comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med. 1994;21:980–3.

    Article  CAS  PubMed  Google Scholar 

  36. Chindris AM, Casler JD, Bernet VJ, et al. Clinical and molecular features of Hürthle cell carcinoma of the thyroid. J Clin Endocrinol Metab. 2015;100:55–62.

    Article  CAS  PubMed  Google Scholar 

  37. Salvatori M, Biondi B, Rufini V. 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in differentiated thyroid carcinoma: clinical indications and controversies in diagnosis and follow-up. Eur J Endocrinol. 2015;173:115–30.

    Google Scholar 

  38. Feine U, Lietzenmayer R, Hanke JP, et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468–72.

    CAS  PubMed  Google Scholar 

  39. Treglia G, Annunziata S, Muoio B, et al. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int J Endocrinol. 2013;2013:856189. https://doi.org/10.1155/2013/856189.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Plotkin M, Hautzel H, Krause BJ, et al. Implication of 2-18fluor-2-deoxyglucose positron emission tomography in the follow-up of Hürthle cell thyroid cancer. Thyroid. 2002;12:155–61.

    Article  PubMed  Google Scholar 

  41. Lowe VJ, Mullan BP, Hay ID, et al. 18F-FDG PET of patients with Hürthle cell carcinoma. J Nucl Med. 2003;44:1402–6.

    PubMed  Google Scholar 

  42. Poisson T, Deandreis D, Leboulleux S, et al. 18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37:2277–85.

    Article  PubMed  Google Scholar 

  43. Grabellus F, Nagarajah J, Bockisch A, et al. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med. 2012;37:121–7.

    Article  PubMed  Google Scholar 

  44. Bogsrud TV, Karantanis D, Nathan MA, et al. 18F-FDG PET in the management of patients with anaplastic thyroid carcinoma. Thyroid. 2008;18:713–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wertenbroek MW, Links TP, Prins TR, et al. Radiofrequency ablation of hepatic metastases from thyroid carcinoma. Thyroid. 2008;18:1105–10.

    Article  PubMed  Google Scholar 

  46. Quan GM, Pointillart V, Palussiere J, et al. Multidisciplinary treatment and survival of patients with vertebral metastases from thyroid carcinoma. Thyroid. 2012;22:125–30.

    Article  PubMed  Google Scholar 

  47. Lorusso L, Pieruzzi L, Biagini A, et al. Lenvatinib and other tyrosine kinase inhibitors for the treatment of radioiodine refractory, advanced, and progressive thyroid cancer. Onco Targets Ther. 2016;20:6467–77.

    Article  Google Scholar 

  48. Farooki A, Leung V, Tala H, et al. Skeletal related events due to bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab. 2012;97:2433–9.

    Article  CAS  PubMed  Google Scholar 

  49. Orita Y, Sugitani I, Toda K, et al. Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid. 2011;21:31–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Salvatori M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salvatori, M., Altini, C., Zagaria, L., Verrillo, A., Perotti, G. (2018). Aggressive Variants of Thyroid Carcinoma. In: Giovanella, L. (eds) Atlas of Thyroid and Neuroendocrine Tumor Markers. Springer, Cham. https://doi.org/10.1007/978-3-319-62506-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62506-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62505-8

  • Online ISBN: 978-3-319-62506-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics