Skip to main content

Challenges of Oncoimmunology for Ovarian and Breast Cancers

  • Chapter
  • First Online:
Oncoimmunology

Abstract

Over the past decade, the ability of cancer cells to evade immune destruction has become recognized as one of the hallmarks of cancer. This understanding has paved the way for the development of novel therapeutic agents that can enhance activation of antitumor immune responses or reverse immunosuppressive mechanisms through which tumors escape immune-mediated rejection. The treatment of ovarian and breast cancers remains a therapeutic challenge, as these malignancies are often diagnosed in advanced stages, and many patients relapse despite appropriate management. Clinical trials have shown efficacy for various immunotherapeutic strategies, especially the use of tumor stroma-targeting antibodies; enhancement of tumor antigen presentation, such as with vaccines and toll-like receptor agonists; and the targeting of immunosuppressive mechanisms, via checkpoint blockade. Emerging preclinical and clinical data provide a strong rationale for combinatorial approaches in these malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.

    Article  CAS  PubMed  Google Scholar 

  2. Nienhuis HH, et al. Targeting breast cancer through its microenvironment: current status of preclinical and clinical research in finding relevant targets. Pharmacol Ther. 2015;147:63–79.

    Article  CAS  PubMed  Google Scholar 

  3. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coventry BJ, Weightman MJ, Bradley J, Skinner JM. Immune profiling in human breast cancer using high-sensitivity detection and analysis techniques. JRSM Open. 2015;6(9):2054270415603909.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salgado R, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26(2):259–71.

    Article  CAS  PubMed  Google Scholar 

  6. Rody A, et al. A clinically relevant gene signature in triple-negative and basal-like breast cancer. Breast Cancer Res. 2011;13(5):R97.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iwamoto T, et al. First generation prognostic gene signatures for breast cancer predict both survival and chemotherapy sensitivity and identify overlapping patient populations. Breast Cancer Res Treat. 2011;130(1):155–64.

    Article  PubMed  Google Scholar 

  8. Denkert C, et al. Strategies for developing Ki67 as a useful biomarker in breast cancer. Breast. 2015;24(Suppl 2):S67–72.

    Article  PubMed  Google Scholar 

  9. Denkert C, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;33(9):983–91.

    Article  CAS  PubMed  Google Scholar 

  10. Loi S, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860–7.

    Article  CAS  PubMed  Google Scholar 

  11. Adams S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Salgado R, et al. Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol. 2015;1(4):448–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bianchini G, et al. Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Ann Oncol. 2015;26(12):2429–36.

    CAS  PubMed  Google Scholar 

  14. Ma D, Gu MJ. Immune effect of tumor-infiltrating lymphocytes and its relation to the survival rate of patients with ovarian malignancies. J Tongji Med Univ. 1991;11(4):235–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol. 2012;124(2):192–8.

    Article  PubMed  Google Scholar 

  16. Paraiso KH, Smalley KS. Fibroblast-mediated drug resistance in cancer. Biochem Pharmacol. 2013;85(8):1033–41.

    Article  CAS  PubMed  Google Scholar 

  17. Liotta LA, Kohn EC. The microenvironment of the tumor-host interface. Nature. 2001;411(6835):375–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  19. Xouri G, Christian S. Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol. 2010;21(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  20. Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T. Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med. 2001;194(11):1549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res. 2005;65(23):11156–63.

    Article  CAS  PubMed  Google Scholar 

  22. Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.

    Article  CAS  PubMed  Google Scholar 

  24. DeNardo DG, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    Article  CAS  PubMed  Google Scholar 

  26. Lin EY, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66(23):11238–46.

    Article  CAS  PubMed  Google Scholar 

  27. Strachan DC, et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. Oncoimmunology. 2013;2(12):e26968.

    Article  PubMed  PubMed Central  Google Scholar 

  28. DeNardo DG, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1(1):54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ries CH, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25(6):846–59.

    Article  CAS  PubMed  Google Scholar 

  30. Aghajanian C, et al. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecol Oncol. 2015;139(1):10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oza AM, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. Lancet Oncol. 2015;16(8):928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patch AM, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.

    Article  CAS  PubMed  Google Scholar 

  33. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    Article  CAS  PubMed  Google Scholar 

  34. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

    Article  Google Scholar 

  37. Lee JM, Ledermann JA, Kohn EC. PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 2014;25(1):32–40.

    Article  PubMed  Google Scholar 

  38. Ledermann J, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15(8):852–61.

    Article  CAS  PubMed  Google Scholar 

  39. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(−/−) murine model of ovarian cancer. Biochem Biophys Res Commun. 2015;463(4):551–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lu Y, Chu A, Turker MS, Glazer PM. Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol Cell Biol. 2011;31(16):3339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumors. Nat Rev Immunol. 2012;12(4):253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pujade-Lauraine E, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol. 2014;32(13):1302–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ledermann JA, et al. Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;387(10023):1066–74.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  46. Sato E, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodell V, et al. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol. 2006;24(5):762–8.

    Article  CAS  PubMed  Google Scholar 

  48. Odunsi K, et al. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients. Proc Natl Acad Sci U S A. 2012;109(15):5797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.

    Article  CAS  PubMed  Google Scholar 

  50. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15(7):405–14.

    Article  CAS  PubMed  Google Scholar 

  51. Alberts DS, et al. Randomized trial of adjuvant intraperitoneal alpha-interferon in stage III ovarian cancer patients who have no evidence of disease after primary surgery and chemotherapy: an intergroup study. Gynecol Oncol. 2006;100(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kim KH, et al. A phase I clinical trial of Ad5/3-Delta24, a novel serotype-chimeric, infectivity-enhanced, conditionally-replicative adenovirus (CRAd), in patients with recurrent ovarian cancer. Gynecol Oncol. 2013;130(3):518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edwards RP, et al. Comparison of toxicity and survival following intraperitoneal recombinant interleukin-2 for persistent ovarian cancer after platinum: twenty-four-hour versus 7-day infusion. J Clin Oncol. 1997;15(11):3399–407.

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez RD, et al. A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: a gynecologic oncology group study. Gynecol Oncol. 2014;133(3):433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  Google Scholar 

  56. Hodi FS, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A. 2008;105(8):3005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamanishi J, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015;33(34):4015–22.

    Article  CAS  PubMed  Google Scholar 

  58. Larkin J, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1.

    Article  PubMed  Google Scholar 

  59. Fujita K, et al. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin Cancer Res. 1995;1(5):501–7.

    CAS  PubMed  Google Scholar 

  60. Chekmasova AA, et al. Successful eradication of established peritoneal ovarian tumors in SCID-beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res. 2010;16(14):3594–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kelemen LE, et al. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk. Mol Nutr Food Res. 2014;58(10):2023–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inaba T, et al. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol. 2009;115(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  63. Gray JC, et al. Optimising anti-tumor CD8 T-cell responses using combinations of immunomodulatory antibodies. Eur J Immunol. 2008;38(9):2499–511.

    Article  CAS  PubMed  Google Scholar 

  64. Mittendorf EA, et al. Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann Oncol. 2014;25(9):1735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rugo HS S Publication Number: S5-07 Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive(ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. 2015 San Antonio Breast Cancer Symposium doi:10.1158/1538-7445.SABCS15-S5-07.

  66. S Tolaney, C Savulsky, G Aktan, D Xing, A Almonte, V Karantza and S Diab Cancer Res. 2017;77 (4):P5-15-02–P5-15-02. doi:10.1158/1538-7445.SABCS16-P5-15-02.

  67. Nanda R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saint-Ghislain, M., Bretagne, M., Sablin, MP., Romano, E. (2018). Challenges of Oncoimmunology for Ovarian and Breast Cancers. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics