Skip to main content

Co-stimulation Agonists via CD137, OX40, GITR, and CD27 for Immunotherapy of Cancer

  • Chapter
  • First Online:
Oncoimmunology

Abstract

T-cell- and NK-cell-mediated immunity are under tight control since their functions involve the elimination of cells showing signs of infection, genetic stress, and/or the promotion of tissue inflammation. Thymic selection processes ensure that the repertoire of antigen T-cell receptors (TCRs) is purged of self-reactivity and is biased to recognize foreign peptides bound to self MHC molecules.

Once in the periphery, T cells patrol in search of their antigen on antigen-presenting cells. If the cognate antigen is met under noninflammatory conditions, the usual outcome is apoptosis or anergy induction of the antigen-recognizing lymphocytes with the reactive lymphocytes left dysfunctional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jenkins MK, Chu HH, McLachlan JB, Moon JJ. On the composition of the preimmune repertoire of T cells specific for peptide–major histocompatibility complex ligands. Annu Rev Immunol. 2010;28(1):275–94.

    Article  CAS  PubMed  Google Scholar 

  2. Apetoh L, Smyth MJ, Drake CG, Abastado J-P, Apte RN, Ayyoub M, et al. Consensus nomenclature for CD8+T cell phenotypes in cancer. Oncoimmunology. 2015;4(4):e998538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975;53:27–42.

    Article  CAS  PubMed  Google Scholar 

  7. Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol. 2010;22(3):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu Y, Yao S, Chen L. Cell surface signaling molecules in the control of immune responses: a tide model. Immunity. 2011;34(4):466–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4(5):336–47.

    Article  CAS  PubMed  Google Scholar 

  10. Dustin ML. The immunological synapse. Cancer Immunol Res. 2014;2(11):1023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, et al. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol. 2010;28(1):79–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dustin ML. What counts in the immunological synapse? Mol Cell. 2014;54(2):255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choudhuri K, Llodrá J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature. 2014;507(7490):118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muller JR, Waldmann TA, Kruhlak MJ, Dubois S. Paracrine and transpresentation functions of IL-15 are mediated by diverse splice versions of IL-15R in human monocytes and dendritic cells. J Biol Chem. 2012;287(48):40328–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211(9):1905–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3(12):939–51.

    Article  CAS  PubMed  Google Scholar 

  18. Dodson LF, Boomer JS, Deppong CM, Shah DD, Sim J, Bricker TL, et al. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol. 2009;29(13):3710–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez-Forero I, Rouzaut A, Palazon A, Dubrot J, Melero I. Lysine 63 polyubiquitination in immunotherapy and in cancer-promoting inflammation. Clin Cancer Res. 2009;15(22):6751–7.

    Article  CAS  PubMed  Google Scholar 

  20. Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature. 2009;458(7237):430–7.

    Article  CAS  PubMed  Google Scholar 

  21. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer. 2007;7(2):95–106.

    Article  CAS  PubMed  Google Scholar 

  22. Soldevilla MM, Villanueva H, Pastor F. Aptamers: a feasible technology in cancer immunotherapy. J Immunol Res. 2016;2016:1–12.

    Article  CAS  Google Scholar 

  23. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res. 2013;19(5):1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Croft M, Duan W, Choi H, Eun S-Y, Madireddi S, Mehta A. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. 2012;33(3):144–52.

    Article  CAS  PubMed  Google Scholar 

  25. Joseph R, Arron MCW, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol. 2002.

    Google Scholar 

  26. So T, Croft M. Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Front Immunol. 2013;4.

    Google Scholar 

  27. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  28. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  29. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  30. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29(1):235–71.

    Article  CAS  PubMed  Google Scholar 

  31. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(6):682–5.

    Article  CAS  PubMed  Google Scholar 

  32. Lynch DH. The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev. 2008;222:277–86.

    Article  CAS  PubMed  Google Scholar 

  33. Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA. 1989;86:1963–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pollok KE, Kim YJ, Zhou Z, Hurtado J, Kim KK, Pickard RT, et al. Inducible T-cell antigen 4-1bb - analysis of expression and function. J Immunol. 1993;150(3):771–81.

    CAS  PubMed  Google Scholar 

  35. Melero I, Murillo O, Dubrot J, Hervás-Stubbs S, Perez-Gracia JL. Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci. 2008;29(8):383–90.

    Article  CAS  PubMed  Google Scholar 

  36. Melero I, Johnston JV, Shufford WW, Mittler RS, Chen LP. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol. 1998;190(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  37. Vinay DS, Kwon BS. 4-1BB signaling beyond T cells. Cell Mol Immunol. 2011;8(4):281–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeBenedette MA, Wen T, Bachmann MF, Ohashi PS, Barber BH, Stocking KL, Peschon JJ, Watts TH. Analysis of 4 1-BB ligand (4 1-BBL) deficient mice and of mice lacking both 4 1-BBL and CD28 reveals a role for 4 1-BBL in skin allograft rejection and in the cytotoxic T cell response. J Immunol. 1999;163:4833–41.

    CAS  PubMed  Google Scholar 

  39. Vinay DS, Choi BK, Bae JS, Kim WY, Gebhardt BM, Kwon BS. CD137-deficient mice have reduced NK/NKT cell numbers and function, are resistant to lipopolysaccharide-induced shock syndromes, and have lower IL-4 responses. J Immunol. 2004;173(6):4218–29.

    Article  CAS  PubMed  Google Scholar 

  40. Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol. 2005;17:275–81.

    Article  CAS  PubMed  Google Scholar 

  41. Willoughby JE, Kerr JP, Rogel A, Taraban VY, Buchan SL, Johnson PWM, et al. Differential impact of CD27 and 4-1BB costimulation on effector and memory CD8 T cell generation following peptide immunization. J Immunol. 2014;193(1):244–51.

    Article  CAS  PubMed  Google Scholar 

  42. Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B, et al. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol. 1994;24(9):2219–27.

    Article  CAS  PubMed  Google Scholar 

  43. Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH. ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol. 2008;180(12):8093–101.

    Article  CAS  PubMed  Google Scholar 

  44. Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med. 1998;187(11):1849–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Madireddi S, Eun S-Y, Lee S-W, Nemčovičová I, Mehta AK, Zajonc DM, et al. Galectin-9 controls the therapeutic activity of 4-1BB–targeting antibodies. J Exp Med. 2014;211(7):1433–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, et al. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol. 2016;46(3):513–22.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez-Forero I, Azpilikueta A, Bolanos-Mateo E, Nistal-Villan E, Palazon A, Teijeira A, et al. T cell costimulation with anti-CD137 monoclonal antibodies is mediated by K63-polyubiquitin-dependent signals from endosomes. J Immunol. 2013;190(12):6694–706.

    Article  CAS  PubMed  Google Scholar 

  48. McPherson AJ, Snell LM, Mak TW, Watts TH. Opposing roles for TRAF1 in the alternative versus classical NF-κB pathway in T cells. J Biol Chem. 2012;287(27):23010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abdul-Sater AA, Edilova MI, Clouthier DL, Mbanwi A, Kremmer E, Watts TH. The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease. Nat Immunol. 2016;18(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  50. Myers L, Vella A. Interfacing T-cell effector and regulatory function through CD137 (4-1BB) co-stimulation. Trends Immunol. 2005;26(8):440–6.

    Article  CAS  PubMed  Google Scholar 

  51. Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther. 2012;11(5):1062–70.

    Article  CAS  PubMed  Google Scholar 

  52. Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Investig. 2002;109(5):651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quetglas JI, Dubrot J, Bezunartea J, Sanmamed MF, Hervas-Stubbs S, Smerdou C, et al. Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic semliki forest virus encoding IL-12. Mol Ther. 2012;20(9):1664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang C, Kang SG, HogenEsch H, Love PE, Kim CH. Retinoic acid determines the precise tissue tropism of inflammatory Th17 cells in the intestine. J Immunol. 2010;184(10):5519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morales-Kastresana A, Sanmamed MF, Rodriguez I, Palazon A, Martinez-Forero I, Labiano S, et al. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin Cancer Res. 2013;19(22):6151–62.

    Article  CAS  PubMed  Google Scholar 

  56. Shi WY, Siemann DW. Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment. Anticancer Res. 2006;26(5A):3445–53.

    CAS  PubMed  Google Scholar 

  57. Ju S-A, Cheon S-H, Park S-M, Tam NQ, Kim YM, An WG, et al. Eradication of established renal cell carcinoma by a combination of 5-fluorouracil and anti-4-1BB monoclonal antibody in mice. Int J Cancer. 2008;122(12):2784–90.

    Article  CAS  PubMed  Google Scholar 

  58. Ye ZM, Hellstrom I, Hayden-Ledbetter M, Dahlin A, Ledbetter JA, Hellstrom KE. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med. 2002;8(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Yang S, Ye Z, Jaffar J, Zhou Y, Cutter E, et al. Tumor cells expressing anti-CD137 scFv induce a tumor-destructive environment. Cancer Res. 2007;67(5):2339–44.

    Article  CAS  PubMed  Google Scholar 

  60. Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL, Al-Shamkhani A, et al. Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of eomesodermin. J Exp Med. 2013;210(4):743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. White AL, Dou L, Chan HTC, Field VL, Mockridge CI, Moss K, et al. Fcγ receptor dependency of agonistic CD40 antibody in lymphoma therapy can be overcome through antibody multimerization. J Immunol. 2014;193(4):1828–35.

    Article  CAS  PubMed  Google Scholar 

  62. Li F, Ravetch JV. Antitumor activities of agonistic anti-TNFR antibodies require differential Fc RIIB coengagement in vivo. Proc Natl Acad Sci. 2013;110(48):19501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McNamara JO, Kolonias D, Pastor F, Mittler RS, Chen L, Giangrande PH, et al. Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Investig. 2008;118(1):376–86.

    Article  CAS  PubMed  Google Scholar 

  64. Pastor F, Kolonias D, Giangrande PH, Gilboa E. Induction of tumour immunity by targeted inhibition of nonsense-mediated mRNA decay. Nature. 2010;465(7295):227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci. 2009;106(9):3360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nam KO, Kang H, Shin SM, Cho KH, Kwon B, Kwon BS, et al. Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J Immunol. 2005;174(4):1898–905.

    Article  CAS  PubMed  Google Scholar 

  70. Seo SK, Choi JH, Kim YH, Kang WJ, Park HY, Suh JH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med. 2004;10(10):1088–94.

    Article  CAS  PubMed  Google Scholar 

  71. Sun Y, Chen HM, Subudhi SK, Chen J, Koka R, Chen L, et al. Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat Med. 2002;8(12):1405–13.

    Article  CAS  PubMed  Google Scholar 

  72. Dubrot J, Milheiro F, Alfaro C, Palazón A, Martinez-Forero I, Perez-Gracia JL, et al. Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol Immunother. 2010;59(8):1223–33.

    Article  CAS  PubMed  Google Scholar 

  73. Mittler RS, Bailey TS, Klussman K, Trailsmith MD, Hoffmann MK. Anti–4-1BB monoclonal antibodies abrogate T cell–dependent humoral immune responses in vivo through the induction of helper T cell anergy. J Exp Med. 1999;15:1535–40.

    Article  Google Scholar 

  74. Alfaro C, Echeveste JI, Rodriguez-Ruiz ME, Solorzano JL, Perez-Gracia JL, Idoate MA, et al. Functional expression of CD137 (4-1BB) on T helper follicular cells. Oncoimmunology. 2015;4(12):e1054597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kohrt HE, Houot R, Goldstein MJ, Weiskopf K, Alizadeh AA, Brody J, et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood. 2011;117(8):2423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Investig. 2012;122(3):1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kohrt HE, Colevas AD, Houot R, Weiskopf K, Goldstein MJ, Lund P, et al. Targeting CD137 enhances the efficacy of cetuximab. J Clin Investig. 2014;124(6):2668–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Srivastava RM, Trivedi S, Concha-Benavente F, Gibson SP, Reeder C, Ferrone S, et al. CD137 stimulation enhances Cetuximab-induced natural killer: dendritic cell priming of antitumor T-cell immunity in patients with head and neck cancer. Clin Cancer Res. 2017;23(3):707–16.

    Article  CAS  PubMed  Google Scholar 

  79. Ascierto PA, Simeone E, Sznol M, Fu Y-X, Melero I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 2010;37(5):508–16.

    Article  CAS  PubMed  Google Scholar 

  80. Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, et al. Results from an integrated safety analysis of Urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res. 2016;23(8):1929–36.

    Article  PubMed  CAS  Google Scholar 

  81. Fisher TS, Kamperschroer C, Oliphant T, Love VA, Lira PD, Doyonnas R, et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunther. 2012;61(10):1721–33.

    Article  CAS  Google Scholar 

  82. Segal NH, Gopal AK, Bhatia S, et al. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. ASCO Meeting Abstracts. 2014.

    Google Scholar 

  83. Segal NH, Gopal AK, Bhatia S, et al. J Clin Oncol. 2014;32:5s.

    Google Scholar 

  84. Paterson DJ, Jefferies WA, Green JR, et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987;24:1281–90.

    Article  CAS  PubMed  Google Scholar 

  85. Mallett S, Fossum S, Barclay AN. Characterization of the Mrc Ox40 antigen of activated Cd4 positive lymphocytes-T - a molecule related to nerve growth-factor receptor. EMBO J. 1990;9(4):1063–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Croft M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol. 2010;28(1):57–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP. Triggering of OX40 (CD134) on CD4(+)CD25(+) T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood. 2005;105(7):2845–51.

    Article  CAS  PubMed  Google Scholar 

  88. Baumann R, Yousefi S, Simon D, Russmann S, Mueller C, Simon H-U. Functional expression of CD134 by neutrophils. Eur J Immunol. 2004;34(8):2268–75.

    Article  CAS  PubMed  Google Scholar 

  89. Karulf M, Kelly A, Weinberg AD, Gold JA. OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. J Immunol. 2010;185(8):4856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baum PR, Gayle RB, Ramsdell F, Srinivasan S, Sorensen RA, Watson ML, et al. Molecular characterization of murine and human Ox40/Ox40 ligand systems - Identification of a human Ox40 ligand as the Htlv-1-regulated protein Gp34. EMBO J. 1994;13(17):3992–4001.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification of a human Ox-40 ligand, a Costimulator of Cd4+ T-cells with homology to tumor-necrosis-factor. J Exp Med. 1994;180(2):757–62.

    Article  CAS  PubMed  Google Scholar 

  92. Rogers PR, Song JX, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity. 2001;15(3):445–55.

    Article  CAS  PubMed  Google Scholar 

  93. Song J, So T, Cheng M, Tang X, Croft M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity. 2005;22(5):621–31.

    Article  CAS  PubMed  Google Scholar 

  94. Redmond WL, Weinberg AD. Targeting OX40 and OX40L for the treatment of autoimmunity and cancer. Crit Rev Immunol. 2007;27:415–36.

    Article  CAS  PubMed  Google Scholar 

  95. Murata K, Nose M, Ndhlovu LC, Sato T, Sugamura K, Ishii N. Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol. 2002;169(8):4628–36.

    Article  CAS  PubMed  Google Scholar 

  96. Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD. Science gone translational: the OX40 agonist story. Immunol Rev. 2011;244(1):218–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol. 2000;164(4):2160–9.

    Article  CAS  PubMed  Google Scholar 

  98. Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu SY. Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res. 2000;60(19):5514–21.

    CAS  PubMed  Google Scholar 

  99. Redmond WL, Gough MJ, Weinberg AD. Ligation of the OX40 co-stimulatory receptor reverses self-Ag and tumor-induced CD8 T-cell anergy in vivo. Eur J Immunol. 2009;39(8):2184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ruby CE, Montler R, Zheng R, Shu S, Weinberg AD. IL-12 is required for anti-OX40-mediated CD4 T cell survival. J Immunol. 2008;180(4):2140–8.

    Article  CAS  PubMed  Google Scholar 

  101. Shoukry NH, Redmond WL, Triplett T, Floyd K, Weinberg AD. Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PLoS One. 2012;7(4):e34467.

    Article  CAS  Google Scholar 

  102. Levy R, Houot R. T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood. 2009;113:3546–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Voo KS, Foglietta M, Percivalle E, Chu F, Nattamai D, Harline M, et al. Selective targeting of Toll-like receptors and OX40 inhibit regulatory T-cell function in follicular lymphoma. Int J Cancer. 2014;135(12):2834–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee SJ, Myers L, Muralimohan G, Dai J, Qiao Y, Li Z, et al. 4-1BB and OX40 dual costimulation synergistically stimulate primary specific CD8 T cells for robust effector function. J Immunol. 2004;173(5):3002–12.

    Article  CAS  PubMed  Google Scholar 

  105. Pan P-Y, Zang Y, Weber K, Meseck ML, Chen S-H. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic Colon metastases. Mol Ther. 2002;6(4):528–36.

    Article  CAS  PubMed  Google Scholar 

  106. Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res. 2013;2(2):142–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med. 2009;206(5):1103–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gough MJ, Crittenden MR, Sarff M, Pang P, Seung SK, Vetto JT, et al. Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice. J Immunother. 2010;33(8):798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Murata S, Ladle BH, Kim PS, Lutz ER, Wolpoe ME, Ivie SE, et al. OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8+ T cell tolerance to an endogenous tumor antigen. J Immunol. 2006;176(2):974–83.

    Article  CAS  PubMed  Google Scholar 

  110. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med. 2008;205(4):825–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Piconese S. Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells. Eur J Immunol. 2011;41:3615–26.

    Article  CAS  PubMed  Google Scholar 

  112. Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol. 2014;92(6):475–80.

    Article  CAS  PubMed  Google Scholar 

  113. Qui HZ, Hagymasi AT, Bandyopadhyay S, St. Rose MC, Ramanarasimhaiah R, Menoret A, et al. CD134 plus CD137 Dual costimulation induces eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol. 2011;187(7):3555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hirschhorn-Cymerman D, Budhu S, Kitano S, Liu C, Zhao F, Zhong H, et al. Induction of tumoricidal function in CD4+T cells is associated with concomitant memory and terminally differentiated phenotype. J Exp Med. 2012;209(11):2113–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weinberg AD, Thalhofer C, Morris N, Walker JM, Seiss D, Wong S, et al. Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effects and toxicokinetic study. J Immunother. 2006;29(6):575–85.

    Article  CAS  PubMed  Google Scholar 

  116. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013;73(24):7189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morris NP, Peters C, Montler R, Hu HM, Curti BD, Urba WJ, et al. Development and characterization of recombinant human Fc: OX40L fusion protein linked via a coiled-coil trimerization domain. Mol Immunol. 2007;44(12):3112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, Riccardi A. A new member of the tumor necrosis factor/nerve growth factor. Proc Natl Acad Sci. 1997;94(12):6216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gurney AL, Marsters SA, Huang A, Pitti RM, Mark M, Baldwin DT, et al. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol. 1999;9(4):215–8.

    Article  CAS  PubMed  Google Scholar 

  120. Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G, et al. Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol. 2004;34(3):613–22.

    Article  CAS  PubMed  Google Scholar 

  121. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  122. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16(2):311–23.

    Article  CAS  PubMed  Google Scholar 

  123. Schaer DA, Murphy JT, Wolchok JD. Modulation of GITR for cancer immunotherapy. Curr Opin Immunol. 2012;24(2):217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Snell LM, McPherson AJ, Lin GHY, Sakaguchi S, Pandolfi PP, Riccardi C, et al. CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. J Immunol. 2010;185(12):7223–34.

    Article  CAS  PubMed  Google Scholar 

  125. Snell LM, GH L, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1-BB during viral infection and cancer immunotherapy. Immunol Rev. 2011;244:197–217.

    Article  CAS  PubMed  Google Scholar 

  126. Turk MJ, Guevara-Patiño JA, Rizzuto GA, Engelhorn ME, Houghton AN. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med. 2004;200(6):771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+regulatory T cells. J Exp Med. 2005;202(7):885–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou P, L’Italien L, Hodges D, Schebye XM. Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. J Immunol. 2007;179(11):7365–75.

    Article  CAS  PubMed  Google Scholar 

  129. Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T, et al. Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res. 2006;66(9):4904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hoffmann C, Stanke J, Kaufmann AM, Loddenkemper C, Schneider A, Cichon G. Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother. 2010;33(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  131. Houot R, Levy R. T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood. 2008;113(15):3546–52.

    Article  PubMed  CAS  Google Scholar 

  132. Mitsui J, Nishikawa H, Muraoka D, Wang L, Noguchi T, Sato E, et al. Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin Cancer Res. 2010;16(10):2781–91.

    Article  CAS  PubMed  Google Scholar 

  133. Pruitt SK, Boczkowski D, de Rosa N, Haley NR, Morse MA, Tyler DS, et al. Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol. 2011;41(12):3553–63.

    Article  CAS  PubMed  Google Scholar 

  134. Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol. 2004;173(8):5008–20.

    Article  CAS  PubMed  Google Scholar 

  135. Nishikawa H, Kato T, Hirayama M, Orito Y, Sato E, Harada N, et al. Regulatory T cell-resistant CD8+ T cells induced by glucocorticoid-induced tumor necrosis factor receptor signaling. Cancer Res. 2008;68(14):5948–54.

    Article  CAS  PubMed  Google Scholar 

  136. Coe D, Begom S, Addey C, White M, Dyson J, Chai J-G. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother. 2010;59(9):1367–77.

    Article  CAS  PubMed  Google Scholar 

  137. Vanlier RAW, Borst J, Vroom TM, Klein H, Vanmourik P, Zeijlemaker WP, et al. Tissue distribution and biochemical and functional-properties of Tp55 (Cd27), a novel T-cell differentiation antigen. J Immunol. 1987;139(5):1589–96.

    CAS  Google Scholar 

  138. Riether C, Schürch C, Ochsenbein AF. Modulating CD27 signaling to treat cancer. Oncoimmunology. 2014;1(9):1604–6.

    Article  Google Scholar 

  139. Jung J, Choe J, Li L, Choi YS. Regulation of CD27 expression in the course of germinal center B cell differentiation the pivotal role of IL10. Eur J Immunol. 2000;30.

    Google Scholar 

  140. Oshima H, Nakano H, Nohara C, Kobata T, Nakajima A, Jenkins NA, et al. Characterization of murine CD70 by molecular cloning and mAb. Int Immunol. 1998;10(4):517–26.

    Article  CAS  PubMed  Google Scholar 

  141. Matter M, Odermatt B, Yagita H, Nuoffer J-M, Ochsenbein AF. Elimination of chronic viral infection by blocking CD27 signaling. J Exp Med. 2006;203(9):2145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, et al. CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-KB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-KB-inducing kinase. J Biol Chem. 1998;273(21):13353–8.

    Article  CAS  PubMed  Google Scholar 

  143. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood. 2007;110(7):2537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kelly JM, Darcy PK, Markby JL, Godfrey DI, Takeda K, Yagita H, et al. Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection. Nat Immunol. 2001;3(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  145. French RR, Taraban VY, Crowther GR, Rowley TF, Gray JC, Johnson PW, et al. Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood. 2007;109(11):4810–5.

    Article  CAS  PubMed  Google Scholar 

  146. Roberts DJ, Franklin NA, Kingeter LM, Yagita H, Tutt AL, Glennie MJ, et al. Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8+ T cells. J Immunother. 2010;33(8):769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Claus C, Riether C, Schurch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res. 2012;72(14):3664–76.

    Article  CAS  PubMed  Google Scholar 

  148. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R, et al. Safety and tumor responses with Lambrolizumab (anti–PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  153. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  PubMed  Google Scholar 

  154. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sznol MF, Hodi FS, Margolin K, et al. Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). ASCO Meeting Abstracts. 2007.

    Google Scholar 

  156. Palazón A, Martínez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF, et al. The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov. 2012;2(7):608–23.

    Article  PubMed  CAS  Google Scholar 

  157. Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJM. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res. 2011;17(8):2270–80.

    Article  CAS  PubMed  Google Scholar 

  158. Marabelle A, Kohrt H, Levy R. Intratumoral anti-CTLA-4 therapy: enhancing efficacy while avoiding toxicity. Clin Cancer Res. 2013;19(19):5261–3.

    Article  CAS  PubMed  Google Scholar 

  159. Aznar MA, Tinari N, Rullán AJ, Sánchez-Paulete AR, Rodriguez-Ruiz ME, Melero I. Intratumoral delivery of immunotherapy—act locally, think globally. J Immunol. 2016;198(1):31–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Melero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melero, I., PĂ©rez-Ruiz, E., Sanchez-Paulete, A.R., Teijeira, A., Aznar, A., Sanmamed, M.F. (2018). Co-stimulation Agonists via CD137, OX40, GITR, and CD27 for Immunotherapy of Cancer. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics