Skip to main content

Approximate Minimum Diameter

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

Abstract

We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a continuous region (\({Imprecise}\) model) or a finite set of points (\({Indecisive}\) model). Given a set of inexact points in one of \({Imprecise}\) or \({Indecisive}\) models, we wish to provide a lower-bound on the diameter of the real points.

In the first part of the paper, we focus on \({Indecisive}\) model. We present an \(O(2^{\frac{1}{\epsilon ^d}} \cdot \epsilon ^{-2d} \cdot n^3 )\) time approximation algorithm of factor \((1+\epsilon )\) for finding minimum diameter of a set of points in d dimensions. This improves the previously proposed algorithms for this problem substantially.

Next, we consider the problem in \({Imprecise}\) model. In d-dimensional space, we propose a polynomial time \(\sqrt{d}\)-approximation algorithm. In addition, for \(d=2\), we define the notion of \(\alpha \)-separability and use our algorithm for \({Indecisive}\) model to obtain \((1+\epsilon )\)-approximation algorithm for a set of \(\alpha \)-separable regions in time \(O(2^{\frac{1}{\epsilon ^2}}. \frac{n^3}{\epsilon ^{10} . \sin (\alpha /2)^3} )\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM (JACM) 51(4), 606–635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, C.C.: Trio a system for data uncertainty and lineage. In: Aggarwal, C.C. (ed.) Managing and Mining Uncertain Data, pp. 1–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Consuegra, M.E., Narasimhan, G., Tanigawa, S.I.: Geometric avatar problems. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013), vol. 24, pp. 389–400. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  4. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data and expected ranks. In: IEEE 25th International Conference on Data Engineering, ICDE 2009, pp. 305–316. IEEE (2009)

    Google Scholar 

  5. Fan, C., Luo, J., Zhong, F., Zhu, B.: Expected computations on color spanning sets. In: Fellows, M., Tan, X., Zhu, B. (eds.) AAIM/FAW -2013. LNCS, vol. 7924, pp. 130–141. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38756-2_15

    Chapter  Google Scholar 

  6. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14553-7_27

    Chapter  Google Scholar 

  7. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard. Inf. Process. Lett. 111(21), 1054–1056 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Har-Peled, S.: Geometric Approximation Algorithms, vol. 173. American Mathematical Society, Boston (2011)

    MATH  Google Scholar 

  9. Jørgensen, A., Löffler, M., Phillips, J.M.: Geometric computations on indecisive points. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 536–547. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22300-6_45

    Chapter  Google Scholar 

  10. Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of color-spanning sets. J. Comb. Optim. 26(2), 266–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Löffler, M.: Data imprecision in computational geometry (2009)

    Google Scholar 

  12. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Computat. Geom. 43(4), 419–433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zarrabi-Zadeh, H.: Geometric approximation algorithms in the online and data stream models. Ph.D. thesis, University of Waterloo (2008)

    Google Scholar 

  14. Zhang, D., Chee, Y.M., Mondal, A., Tung, A., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: IEEE 25th International Conference on Data Engineering, ICDE 2009, pp. 688–699. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Homapour or Masoud Seddighin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ghodsi, M., Homapour, H., Seddighin, M. (2017). Approximate Minimum Diameter. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics