Skip to main content

Abstract

Sickle cell disease (SCD) is associated with many acute and chronic complications which require management with pharmacologic agents. Advances in health care and public policies have successfully reduced the mortality in children with SCD and has led to its evolution into a chronic disease in adults living with SCD. While management of SCD remains largely symptomatic with only one FDA-approved pharmacologic disease-modifying agent hydroxyurea, improved understanding of complex mechanisms underlying the pathophysiology of SCD is paving way for new therapies. In this chapter we review current disease-modifying therapies and supportive care for patients with SCD and briefly discuss pharmacologic agents currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48.

    Article  PubMed  CAS  Google Scholar 

  2. Strouse JJ, Heeney MM. Hydroxyurea for the treatment of sickle cell disease: efficacy, barriers, toxicity, and management in children. Pediatr Blood Cancer. 2012;59(2):365–71.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sciences USDoHaH. Evidence-based management of sickle cell disease. Bethesda, MD: National Institute of Health, National Heart, Lung, and Blood Institute; 2014. http://www.nhlbi.nih.gov/guidelines. Accessed 11 Jan 2014

    Google Scholar 

  4. Serjeant GR. Fetal haemoglobin in homozygous sickle cell disease. Clin Haematol. 1975;4(1):109–22.

    CAS  PubMed  Google Scholar 

  5. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984;74(2):652–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Letvin NL, Linch DC, Beardsley GP, McIntyre KW, Miller BA, Nathan DG. Influence of cell cycle phase-specific agents on simian fetal hemoglobin synthesis. J Clin Invest. 1985;75(6):1999–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Institute NC. NCI drug dictionary: hydroxyurea. Lenoir County, NC: Institute NC; 2017. http://www.cancer.gov/publications/dictionaries/cancer-drug?CdrID=40685. Accessed 10 Jan 2017

    Google Scholar 

  8. Baliga BS, Pace BS, Chen HH, Shah AK, Yang YM. Mechanism for fetal hemoglobin induction by hydroxyurea in sickle cell erythroid progenitors. Am J Hematol. 2000;65(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  9. Fibach E, Burke LP, Schechter AN, Noguchi CT, Rodgers GP. Hydroxyurea increases fetal hemoglobin in cultured erythroid cells derived from normal individuals and patients with sickle cell anemia or beta-thalassemia. Blood. 1993;81(6):1630–5.

    CAS  PubMed  Google Scholar 

  10. Grieco AJ, Billett HH, Green NS, Driscoll MC, Bouhassira EE. Variation in gamma-globin expression before and after induction with hydroxyurea associated with BCL11A, KLF1 and TAL1. PLoS One. 2015;10(6):e0129431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cokic VP, Smith RD, Beleslin-Cokic BB, Njoroge JM, Miller JL, Gladwin MT, et al. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest. 2003;111(2):231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ballas SK, Dover GJ, Charache S. Effect of hydroxyurea on the rheological properties of sickle erythrocytes in vivo. Am J Hematol. 1989;32(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  13. Bridges KR, Barabino GD, Brugnara C, Cho MR, Christoph GW, Dover G, et al. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood. 1996;88(12):4701–10.

    CAS  PubMed  Google Scholar 

  14. Almeida CB, Scheiermann C, Jang JE, Prophete C, Costa FF, Conran N, et al. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood. 2012;120(14):2879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med. 1995;332(20):1317–22.

    Article  CAS  PubMed  Google Scholar 

  16. Steinberg MH, Barton F, Castro O, Pegelow CH, Ballas SK, Kutlar A, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645–51.

    Article  CAS  PubMed  Google Scholar 

  17. Kinney TR, Helms RW, O'Branski EE, Ohene-Frempong K, Wang W, Daeschner C, et al. Safety of hydroxyurea in children with sickle cell anemia: results of the HUG-KIDS study, a phase I/II trial. Pediatric hydroxyurea group. Blood. 1999;94(5):1550–4.

    CAS  PubMed  Google Scholar 

  18. Wang WC, Wynn LW, Rogers ZR, Scott JP, Lane PA, Ware RE. A two-year pilot trial of hydroxyurea in very young children with sickle-cell anemia. J Pediatr. 2001;139(6):790–6.

    Article  CAS  PubMed  Google Scholar 

  19. Zimmerman SA, Schultz WH, Davis JS, Pickens CV, Mortier NA, Howard TA, et al. Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease. Blood. 2004;103(6):2039–45.

    Article  CAS  PubMed  Google Scholar 

  20. Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet. 2011;377(9778):1663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ware RE. How I use hydroxyurea to treat young patients with sickle cell anemia. Blood. 2010;115(26):5300–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharpe CC, Thein SL. How I treat renal complications in sickle cell disease. Blood. 2014;123(24):3720–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zimmerman SA, Schultz WH, Burgett S, Mortier NA, Ware RE. Hydroxyurea therapy lowers transcranial Doppler flow velocities in children with sickle cell anemia. Blood. 2007;110(3):1043–7.

    Article  CAS  PubMed  Google Scholar 

  24. Voskaridou E, Christoulas D, Bilalis A, Plata E, Varvagiannis K, Stamatopoulos G, et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood. 2010;115(12):2354–63.

    Article  CAS  PubMed  Google Scholar 

  25. Ware RE, Helms RW. Stroke with transfusions changing to hydroxyurea (SWiTCH). Blood. 2012;119(17):3925–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ware RE, Davis BR, Schultz WH, Brown RC, Aygun B, Sarnaik S, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial Doppler flow velocities in children with sickle cell anaemia-TCD with transfusions changing to hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387(10019):661–70.

    Article  CAS  PubMed  Google Scholar 

  27. Halsey C, Roberts IA. The role of hydroxyurea in sickle cell disease. Br J Haematol. 2003;120(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  28. McGann PT, Ware RE. Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf. 2015;14(11):1749–58.

    Article  CAS  PubMed  Google Scholar 

  29. de Montalembert M, Begue P, Bernaudin F, Thuret I, Bachir D, Micheau M. Preliminary report of a toxicity study of hydroxyurea in sickle cell disease. French study group on sickle cell disease. Arch Dis Child. 1999;81(5):437–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hoppe C, Vichinsky E, Quirolo K, van Warmerdam J, Allen K, Styles L. Use of hydroxyurea in children ages 2 to 5 years with sickle cell disease. J Pediatr Hematol Oncol. 2000;22(4):330–4.

    Article  CAS  PubMed  Google Scholar 

  31. Wang WC, Helms RW, Lynn HS, Redding-Lallinger R, Gee BE, Ohene-Frempong K, et al. Effect of hydroxyurea on growth in children with sickle cell anemia: results of the HUG-KIDS Study. J Pediatr. 2002;140(2):225–9.

    Article  CAS  PubMed  Google Scholar 

  32. Castro O, Nouraie M, Oneal P. Hydroxycarbamide treatment in sickle cell disease: estimates of possible leukaemia risk and of hospitalization survival benefit. Br J Haematol. 2014;167(5):687–91.

    Article  CAS  PubMed  Google Scholar 

  33. Jones KM, Niaz MS, Brooks CM, Roberson SI, Aguinaga MP, Hills ER, et al. Adverse effects of a clinically relevant dose of hydroxyurea used for the treatment of sickle cell disease on male fertility endpoints. Int J Environ Res Public Health. 2009;6(3):1124–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grigg A. Effect of hydroxyurea on sperm count, motility and morphology in adult men with sickle cell or myeloproliferative disease. Intern Med J. 2007;37(3):190–2.

    Article  CAS  PubMed  Google Scholar 

  35. Berthaut I, Guignedoux G, Kirsch-Noir F, de Larouziere V, Ravel C, Bachir D, et al. Influence of sickle cell disease and treatment with hydroxyurea on sperm parameters and fertility of human males. Haematologica. 2008;93(7):988–93.

    Article  CAS  PubMed  Google Scholar 

  36. Ballas SK, McCarthy WF, Guo N, DeCastro L, Bellevue R, Barton BA, et al. Exposure to hydroxyurea and pregnancy outcomes in patients with sickle cell anemia. J Natl Med Assoc. 2009;101(10):1046–51.

    Article  PubMed  Google Scholar 

  37. Byrd DC, Pitts SR, Alexander CK. Hydroxyurea in two pregnant women with sickle cell anemia. Pharmacotherapy. 1999;19(12):1459–62.

    Article  CAS  PubMed  Google Scholar 

  38. Diav-Citrin O, Hunnisett L, Sher GD, Koren G. Hydroxyurea use during pregnancy: a case report in sickle cell disease and review of the literature. Am J Hematol. 1999;60(2):148–50.

    Article  CAS  PubMed  Google Scholar 

  39. Stevens MR. Hydroxyurea: an overview. J Biol Regul Homeost Agents. 1999;13(3):172–5.

    CAS  PubMed  Google Scholar 

  40. Spencer F, Chi L, Zhu MX. Hydroxyurea inhibition of cellular and developmental activities in the decidualized and pregnant uteri of rats. J Appl Toxicol. 2000;20(5):407–12.

    Article  CAS  PubMed  Google Scholar 

  41. Chaube S, Murphy ML. The effects of hydroxyurea and related compounds on the rat fetus. Cancer Res. 1966;26(7):1448–57.

    CAS  PubMed  Google Scholar 

  42. Khera KS. A teratogenicity study on hydroxyurea and diphenylhydantoin in cats. Teratology. 1979;20(3):447–52.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson JG, Scott WJ, Ritter EJ, Fradkin R. Comparative distribution and embryotoxicity of hydroxyurea in pregnant rats and rhesus monkeys. Teratology. 1975;11(2):169–78.

    Article  CAS  PubMed  Google Scholar 

  44. Brandow AM, Panepinto JA. Hydroxyurea use in sickle cell disease: the battle with low prescription rates, poor patient compliance and fears of toxicities. Expert Rev Hematol. 2010;3(3):255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lanzkron S, Haywood C Jr, Hassell KL, Rand C. Provider barriers to hydroxyurea use in adults with sickle cell disease: a survey of the sickle cell disease adult provider network. J Natl Med Assoc. 2008;100(8):968–73.

    Article  PubMed  Google Scholar 

  46. Zumberg MS, Reddy S, Boyette RL, Schwartz RJ, Konrad TR, Lottenberg R. Hydroxyurea therapy for sickle cell disease in community-based practices: a survey of Florida and North Carolina hematologists/oncologists. Am J Hematol. 2005;79(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  47. Brandow AM, Jirovec DL, Panepinto JA. Hydroxyurea in children with sickle cell disease: practice patterns and barriers to utilization. Am J Hematol. 2010;85(8):611–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oyeku SO, Driscoll MC, Cohen HW, Trachtman R, Pashankar F, Mullen C, et al. Parental and other factors associated with hydroxyurea use for pediatric sickle cell disease. Pediatr Blood Cancer. 2013;60(4):653–8.

    Article  CAS  PubMed  Google Scholar 

  49. Wang WC, Oyeku SO, Luo Z, Boulet SL, Miller ST, Casella JF, et al. Hydroxyurea is associated with lower costs of care of young children with sickle cell anemia. Pediatrics. 2013;132(4):677–83.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Allison AC. Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J. 1954;1(4857):290–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Odame I. Developing a global agenda for sickle cell disease: report of an international symposium and workshop in Cotonou, Republic of Benin. Am J Prev Med. 2010;38(4 Suppl):S571–5.

    Article  PubMed  Google Scholar 

  53. Anyanwu JN, Williams O, Sautter CL, Kasirye P, Hume H, Opoka RO, et al. Novel use of hydroxyurea in an african region with malaria: protocol for a randomized controlled clinical trial. JMIR Res Protoc. 2016;5(2):e110.

    Article  PubMed  PubMed Central  Google Scholar 

  54. McGann PT, Tshilolo L, Santos B, Tomlinson GA, Stuber S, Latham T, et al. Hydroxyurea therapy for children with sickle cell anemia in Sub-Saharan Africa: rationale and design of the REACH trial. Pediatr Blood Cancer. 2016;63(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  55. Galadanci NA, Abdullahi SU, Tabari MA, Abubakar S, Belonwu R, Salihu A, et al. Primary stroke prevention in Nigerian children with sickle cell disease (SPIN): challenges of conducting a feasibility trial. Pediatr Blood Cancer. 2015;62(3):395–401.

    Article  CAS  PubMed  Google Scholar 

  56. Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  57. Shenoy S. Has stem cell transplantation come of age in the treatment of sickle cell disease? Bone Marrow Transplant. 2007;40(9):813–21.

    Article  CAS  PubMed  Google Scholar 

  58. Hardwick WE Jr, Givens TG, Monroe KW, King WD, Lawley D. Effect of ketorolac in pediatric sickle cell vaso-occlusive pain crisis. Pediatr Emerg Care. 1999;15(3):179–82.

    Article  PubMed  Google Scholar 

  59. Perlin E, Finke H, Castro O, Rana S, Pittman J, Burt R, et al. Enhancement of pain control with ketorolac tromethamine in patients with sickle cell vaso-occlusive crisis. Am J Hematol. 1994;46(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  60. Jacobson SJ, Kopecky EA, Joshi P, Babul N. Randomised trial of oral morphine for painful episodes of sickle-cell disease in children. Lancet. 1997;350(9088):1358–61.

    Article  CAS  PubMed  Google Scholar 

  61. Wright SW, Norris RL, Mitchell TR. Ketorolac for sickle cell vaso-occlusive crisis pain in the emergency department: lack of a narcotic-sparing effect. Ann Emerg Med. 1992;21(8):925–8.

    Article  CAS  PubMed  Google Scholar 

  62. Brookoff D, Polomano R. Treating sickle cell pain like cancer pain. Ann Intern Med. 1992;116(5):364–8.

    Article  CAS  PubMed  Google Scholar 

  63. van Beers EJ, van Tuijn CF, Nieuwkerk PT, Friederich PW, Vranken JH, Biemond BJ. Patient-controlled analgesia versus continuous infusion of morphine during vaso-occlusive crisis in sickle cell disease, a randomized controlled trial. Am J Hematol. 2007;82(11):955–60.

    Article  PubMed  CAS  Google Scholar 

  64. Gonzalez ER, Bahal N, Hansen LA, Ware D, Bull DS, Ornato JP, et al. Intermittent injection vs patient-controlled analgesia for sickle cell crisis pain. Comparison in patients in the emergency department. Arch Intern Med. 1991;151(7):1373–8.

    Article  CAS  PubMed  Google Scholar 

  65. McPherson E, Perlin E, Finke H, Castro O, Pittman J. Patient-controlled analgesia in patients with sickle cell vaso-occlusive crisis. Am J Med Sci. 1990;299(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  66. Chou R, Fanciullo GJ, Fine PG, Miaskowski C, Passik SD, Portenoy RK. Opioids for chronic noncancer pain: prediction and identification of aberrant drug-related behaviors: a review of the evidence for an American Pain Society and American Academy of Pain Medicine clinical practice guideline. J Pain. 2009;10(2):131–46.

    Article  CAS  PubMed  Google Scholar 

  67. Chou R, Ballantyne JC, Fanciullo GJ, Fine PG, Miaskowski C. Research gaps on use of opioids for chronic noncancer pain: findings from a review of the evidence for an American Pain Society and American Academy of Pain Medicine clinical practice guideline. J Pain. 2009;10(2):147–59.

    Article  CAS  PubMed  Google Scholar 

  68. Dampier C, Palermo TM, Darbari DS, Hassell K, Smith W, Zempsky W. AAPT diagnostic criteria for chronic sickle cell disease pain. J Pain. 2017;18(5):490–8.

    Article  PubMed  Google Scholar 

  69. Smith WR, Scherer M. Sickle-cell pain: advances in epidemiology and etiology. Hematology Am Soc Hematol Educ Program. 2010;2010:409–15.

    PubMed  Google Scholar 

  70. Darbari DS, Neely M, van den Anker J, Rana S. Increased clearance of morphine in sickle cell disease: implications for pain management. J Pain. 2011;12(5):531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Darbari DS, Minniti CP, Rana S, van den Anker J. Pharmacogenetics of morphine: Potential implications in sickle cell disease. Am J Hematol. 2008;83(3):233–6.

    Article  CAS  PubMed  Google Scholar 

  72. Tobias JD, Green TP, Cote CJ. Codeine: time to say "no". Pediatrics. 2016;138(4):e9.

    Article  Google Scholar 

  73. Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther. 2012;91(2):321–6.

    Article  CAS  PubMed  Google Scholar 

  74. Neri CM, Pestieau SR, Darbari DS. Low-dose ketamine as a potential adjuvant therapy for painful vaso-occlusive crises in sickle cell disease. Paediatr Anaesth. 2013;23(8):684–9.

    Article  PubMed  Google Scholar 

  75. Zempsky WT, Loiselle KA, Corsi JM, Hagstrom JN. Use of low-dose ketamine infusion for pediatric patients with sickle cell disease-related pain: a case series. Clin J Pain. 2010;26(2):163–7.

    Article  PubMed  Google Scholar 

  76. Meals CG, Mullican BD, Shaffer CM, Dangerfield PF, Ramirez RP. Ketamine infusion for sickle cell crisis pain in an adult. J Pain Symptom Manag. 2011;42(3):e7–9.

    Article  Google Scholar 

  77. Sheehy KA, Finkel JC, Darbari DS, Guerrera MF, Quezado ZM. Dexmedetomidine as an adjuvant to analgesic strategy during vaso-occlusive episodes in adolescents with sickle-cell disease. Pain Pract. 2015;15(8):E90–7.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Phillips WJ, Gadiraju S, Dickey S, Galli R, Lerant AA. Dexmedetomidine relieves pain associated with acute sickle cell crisis. J Pain Symptom Manag. 2007;34(4):346–9.

    Article  CAS  Google Scholar 

  79. Castagnola E, Fioredda F. Prevention of life-threatening infections due to encapsulated bacteria in children with hyposplenia or asplenia: a brief review of current recommendations for practical purposes. Eur J Haematol. 2003;71(5):319–26.

    Article  PubMed  Google Scholar 

  80. Di Sabatino A, Carsetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet. 2011;378(9785):86–97.

    Article  PubMed  Google Scholar 

  81. Humbert JR, Winsor EL, Githens JM, Schmitz JB. Neutrophil dysfunctions in sickle cell disease. Biomed Pharmacother. 1990;44(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  82. Johnston RB Jr, Newman SL, Struth AG. Increased susceptibility to infection in sickle cell disease: defects of opsonization and of splenic function. Birth Defects Orig Artic Ser. 1975;11(1):322–7.

    PubMed  Google Scholar 

  83. Onwubalili JK. Sickle cell disease and infection. J Infect. 1983;7(1):2–20.

    Article  CAS  PubMed  Google Scholar 

  84. Overturf GD. Infections and immunizations of children with sickle cell disease. Adv Pediatr Infect Dis. 1999;14:191–218.

    CAS  PubMed  Google Scholar 

  85. Koffi KG, Sawadogo D, Meite M, Nanho DC, Tanoh ES, Attia AK, et al. Reduced levels of T-cell subsets CD4+ and CD8+ in homozygous sickle cell anaemia patients with splenic defects. Hematol J. 2003;4(5):363–5.

    Article  PubMed  Google Scholar 

  86. Zarkowsky HS, Gallagher D, Gill FM, Wang WC, Falletta JM, Lande WM, et al. Bacteremia in sickle hemoglobinopathies. J Pediatr. 1986;109(4):579–85.

    Article  CAS  PubMed  Google Scholar 

  87. Battersby AJ, Knox-Macaulay HH, Carrol ED. Susceptibility to invasive bacterial infections in children with sickle cell disease. Pediatr Blood Cancer. 2010;55(3):401–6.

    Article  PubMed  Google Scholar 

  88. Gaston MH, Verter JI, Woods G, Pegelow C, Kelleher J, Presbury G, et al. Prophylaxis with oral penicillin in children with sickle cell anemia. A randomized trial. N Engl J Med. 1986;314(25):1593–9.

    Article  CAS  PubMed  Google Scholar 

  89. Falletta JM, Woods GM, Verter JI, Buchanan GR, Pegelow CH, Iyer RV, et al. Discontinuing penicillin prophylaxis in children with sickle cell anemia. Prophylactic penicillin study II. J Pediatr. 1995;127(5):685–90.

    Article  CAS  PubMed  Google Scholar 

  90. Kuchar E, Miskiewicz K, Karlikowska M. A review of guidance on immunization in persons with defective or deficient splenic function. Br J Haematol. 2015;171(5):683–94.

    Article  PubMed  Google Scholar 

  91. Ramakrishnan M, Moisi JC, Klugman KP, Iglesias JM, Grant LR, Mpoudi-Etame M, et al. Increased risk of invasive bacterial infections in African people with sickle-cell disease: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(5):329–37.

    Article  PubMed  Google Scholar 

  92. Han J, Kemiki O, Hsu LL, Rivers AE. Adverse reactions to pneumococcal vaccine in pediatric and adolescent patients with sickle cell disease. Pharmacotherapy. 2015;35(7):696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Powars D, Chan LS, Schroeder WA. The variable expression of sickle cell disease is genetically determined. Semin Hematol. 1990;27(4):360–76.

    CAS  PubMed  Google Scholar 

  94. Bundy DG, Strouse JJ, Casella JF, Miller MR. Burden of influenza-related hospitalizations among children with sickle cell disease. Pediatrics. 2010;125(2):234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Purohit S, Alvarez O, O'Brien R, Andreansky S. Durable immune response to inactivated H1N1 vaccine is less likely in children with sickle cell anemia receiving chronic transfusions. Pediatr Blood Cancer. 2012;59(7):1280–3.

    Article  PubMed  Google Scholar 

  96. Szczepanek SM, Roberts S, Rogers K, Cotte C, Adami AJ, Bracken SJ, et al. Poor long-term efficacy of Prevnar-13 in sickle cell disease mice is associated with an inability to sustain pneumococcal-specific antibody titers. PLoS One. 2016;11(2):e0149261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Santoro JD, Myers L, Kanter J. Assessing the immunogenic response of a single center’s pneumococcal vaccination protocol in sickle cell disease. J Pediatr Hematol Oncol. 2016;38(3):e102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Souza AR, Maruyama CM, Safadi MA, Lopes MH, Azevedo RS, Findlow H, et al. Antibody persistence after serogroup C meningococcal conjugate vaccine in children with sickle cell disease. Vaccine. 2016;34(36):4327–34.

    Article  CAS  PubMed  Google Scholar 

  99. Hord J, Windsor B, Koehler M, Blatt J, Janosky J, Mirro J. Diminished antibody response to hepatitis B immunization in children with sickle cell disease. J Pediatr Hematol Oncol. 2002;24(7):548–9.

    Article  PubMed  Google Scholar 

  100. Okomo U, Meremikwu MM. Fluid replacement therapy for acute episodes of pain in people with sickle cell disease. Cochrane Database Syst Rev. 2015;3:CD005406.

    Google Scholar 

  101. Mueller BU, Brugnara C. Prevention of red cell dehydration: a possible new treatment for sickle cell disease. Pediatr Pathol Mol Med. 2001;20(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  102. Clark MR, Shohet SB. The effect of abnormal hemoglobins on the membrane regulation of cell hydration. Tex Rep Biol Med. 1980;40:417–29.

    CAS  PubMed  Google Scholar 

  103. Becker AM. Sickle cell nephropathy: challenging the conventional wisdom. Pediatr Nephrol. 2011;26(12):2099–109.

    Article  PubMed  Google Scholar 

  104. de Santis FL, de Abreu Carvalhaes JT, Sesso R. Renal complications of sickle cell disease: managing for optimal outcomes. Paediatr Drugs. 2002;4(1):29–36.

    Article  Google Scholar 

  105. Sharpe CC, Thein SL. Sickle cell nephropathy - a practical approach. Br J Haematol. 2011;155(3):287–97.

    Article  CAS  PubMed  Google Scholar 

  106. Orkin SH, Nathan DG, Ginsburg D, Look AT, Fisher D, Lux SE. Nathan and Oski’s hematology of infancy and childhood. 7th ed. Philadelphia, PA: Elsevier; 2009.

    Google Scholar 

  107. Reid S, Lubin B, editors. Management and therapy of sickle cell disease. Bethesda, MD: National Heart, Lung, and Blood Institute; 1995. p. 144.

    Google Scholar 

  108. Miller ST. How I treat acute chest syndrome in children with sickle cell disease. Blood. 2011;117(20):5297–305.

    Article  CAS  PubMed  Google Scholar 

  109. Haynes J Jr, Allison RC. Pulmonary edema. Complication in the management of sickle cell pain crisis. Am J Med. 1986;80(5):833–40.

    Article  PubMed  Google Scholar 

  110. Gulley ML, Ross DW, Feo C, Orringer EP. The effect of cell hydration on the deformability of normal and sickle erythrocytes. Am J Hematol. 1982;13(4):283–91.

    Article  CAS  PubMed  Google Scholar 

  111. Okpala I. The management of crisis in sickle cell disease. Eur J Haematol. 1998;60(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  112. Charache S, Moyer MA, Walker WG. Treatment of acute sickle cell crises with a vasopressin analogue. Am J Hematol. 1983;15(4):315–9.

    Article  CAS  PubMed  Google Scholar 

  113. Carden MA, Fay M, Sakurai Y, McFarland B, Blanche S, Diprete C, et al. Normal saline is associated with increased sickle red cell stiffness and prolonged transit times in a microfluidic model of the capillary system. Microcirculation. 2017;PMID:28106307.

    Google Scholar 

  114. Nath KA, Katusic ZS. Vasculature and kidney complications in sickle cell disease. J Am Soc Nephrol. 2012;23(5):781–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Telen MJ. Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease. Blood. 2016;127(7):810–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Singh PC, Ballas SK. Emerging drugs for sickle cell anemia. Expert Opin Emerg Drugs. 2015;20(1):47–61.

    Article  CAS  PubMed  Google Scholar 

  117. Manwani D, Frenette PS. Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Hematology Am Soc Hematol Educ Program. 2013;2013:362–9.

    PubMed  Google Scholar 

  118. Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A. 2002;99(5):3047–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Frenette PS. Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol. 2002;9(2):101–6.

    Article  PubMed  Google Scholar 

  120. Chang J, Patton JT, Sarkar A, Ernst B, Magnani JL, Frenette PS. GMI-1070, a novel pan-selectin antagonist, reverses acute vascular occlusions in sickle cell mice. Blood. 2010;116(10):1779–86.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Telen MJ, Wun T, McCavit TL, De Castro LM, Krishnamurti L, Lanzkron S, et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125(17):2656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429–39.

    Article  CAS  PubMed  Google Scholar 

  123. Riggs A, Wells M. The oxygen equilibrium of sickle-cell hemoglobin. Biochim Biophys Acta. 1961;50:243–8.

    Article  CAS  PubMed  Google Scholar 

  124. Charache S, Grisolia S, Fiedler AJ, Hellegers AE. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J Clin Invest. 1970;49(4):806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Safo MK, Kato GJ. Therapeutic strategies to alter the oxygen affinity of sickle hemoglobin. Hematol Oncol Clin North Am. 2014;28(2):217–31.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Oksenberg D, Dufu K, Patel MP, Chuang C, Li Z, Xu Q, et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br J Haematol. 2016;175(1):141–53.

    Article  CAS  PubMed  Google Scholar 

  127. Kutlar A, Ataga K, Reid M, Vichinsky EP, Neumayr L, Blair-Britt L, et al. A phase 1/2 trial of HQK-1001, an oral fetal globin inducer, in sickle cell disease. Am J Hematol. 2012;87(11):1017–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, et al. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102(12):3865–70.

    Article  CAS  PubMed  Google Scholar 

  129. Meiler SE, Wade M, Kutlar F, Yerigenahally SD, Xue Y, Moutouh-de Parseval LA, et al. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood. 2011;118(4):1109–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hebbel RP, Vercellotti GM, Pace BS, Solovey AN, Kollander R, Abanonu CF, et al. The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice. Blood. 2010;115(12):2483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Field JJ, Lin G, Okam MM, Majerus E, Keefer J, Onyekwere O, et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood. 2013;121(17):3329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Heeney MM, Hoppe CC, Abboud MR, Inusa B, Kanter J, Ogutu B, et al. A multinational trial of prasugrel for sickle cell vaso-occlusive events. N Engl J Med. 2016;374(7):625–35.

    Article  CAS  PubMed  Google Scholar 

  133. Daak AA, Elderdery AY, Elbashir LM, Mariniello K, Mills J, Scarlett G, et al. Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-kappaB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease. Blood Cells Mol Dis. 2015;55(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  134. Manwani D, Chen G, Carullo V, Serban S, Olowokure O, Jang J, et al. Single-dose intravenous gammaglobulin can stabilize neutrophil Mac-1 activation in sickle cell pain crisis. Am J Hematol. 2015;90(5):381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Orringer EP, Casella JF, Ataga KI, Koshy M, Adams-Graves P, Luchtman-Jones L, et al. Purified poloxamer 188 for treatment of acute vaso-occlusive crisis of sickle cell disease: a randomized controlled trial. JAMA. 2001;286(17):2099–106.

    Article  CAS  PubMed  Google Scholar 

  136. Steppan J, Tran HT, Bead VR, Oh YJ, Sikka G, Bivalacqua TJ, et al. Arginase inhibition reverses endothelial dysfunction, pulmonary hypertension, and vascular stiffness in transgenic sickle cell mice. Anesth Analg. 2016;123(3):652–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika S. Darbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, C.L., Darbari, D.S. (2018). Current Non-HSCT Treatments for SCD. In: Meier, E., Abraham, A., Fasano, R. (eds) Sickle Cell Disease and Hematopoietic Stem Cell Transplantation . Springer, Cham. https://doi.org/10.1007/978-3-319-62328-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62328-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62327-6

  • Online ISBN: 978-3-319-62328-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics