Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1063 Accesses

Abstract

In this thesis, the development of energy-efficient, accurate smart temperature sensors for wireless temperature sensing applications has been investigated. It has been shown that the existing temperature sensors prior to the start of this research were ill suited for use in such applications, where energy efficiency and low cost are critical requirements. In the following, first the main findings of this research are discussed. The other applications of the developed techniques are then presented, followed by some proposals for the future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.A.A. Makinwa, Smart temperature sensor survey, http://ei.ewi.tudelft.nl/docs/TSensor_survey.xls

  2. K. Souri, Y. Chae, K.A.A. Makinwa, A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0. 15∘C (3σ) from −55 to 125∘C, in Digest of Technical Papers (ISSCC), 2012, pp. 208–209

    Google Scholar 

  3. K. Souri, Y. Chae, Y. Ponomarev, K.A.A. Makinwa, A precision DTMOST-based temperature sensor, in Proceedings of ESSCIRC, 2011, pp. 279–282

    Google Scholar 

  4. K. Souri, Y. Chae, F. Thus, K.A.A. Makinwa, A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ± 0. 4∘C (3σ) from −40 to 125∘C, in Digest of Technical Papers (ISSCC), 2014, pp. 222–223

    Google Scholar 

  5. PCT2075 data sheet, NXP Semiconductors, 2014, www.nxp.com

  6. PCT2202UK data sheet, NXP Semiconductors, 2015, www.nxp.com

  7. Y. Chae, K. Souri, K.A.A. Makinwa, A 6. 3μW 20bit incremental zoom-ADC with 6ppm INL and 1μV offset. IEEE J. Solid-State Circuits 48(12), 3019–3027 (2013)

    Google Scholar 

  8. B. Gonen, F. Sebastiano, R. van Veldhoven, K.A.A. Makinwa, A 1.65mW 0.16mm2 dynamic zoom-ADC with 107.5dB DR in 20kHz BW, in Digest of Technical Papers (ISSCC), 2016, pp. 282–283

    Google Scholar 

  9. M.A.P. Pertijs, J.H. Huijsing, Precision Temperature Sensors in CMOS Technology (Springer, Dordrecht, 2006)

    Google Scholar 

  10. C.P.L. van Vroonhoven, D. d’Aquino, K.A.A. Makinwa, A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ± 0. 2∘C (3σ) from − 55∘C to 125∘C, in Digest of Technical Papers (ISSCC), 2010, pp. 314–315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Souri, K., Makinwa, K.A.A. (2018). Conclusions. In: Energy-Efficient Smart Temperature Sensors in CMOS Technology. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-62307-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62307-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62306-1

  • Online ISBN: 978-3-319-62307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics