Skip to main content

Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Ultramafic outcrops represent less than 1% of the terrestrial surface but their unusual geochemistry makes them a global hotspot for biodiversity. Ultramafic soils are a peculiarity for soil scientists in all climatic zones of the world. These soils lack essential pedogenetic elements: Al, Ca, K, and P. Whereas serpentinites will most likely give birth to Eutric Cambisols with little influence by climate, peridotites will induce an acceleration of weathering processes; this over-expressed weathering is due to their deficiency in Si and Al and lack of secondary clay formation. Soils evolve towards Ferralsols in tropical conditions. Results from isotopic dilution techniques show that Ni borne by primary minerals is unavailable. Secondary 2:1 clay minerals (e.g. Fe-rich smectite) and amorphous Fe oxyhydroxides are the most important phases that bear available Ni. Therefore, smectite-rich soils developed on serpentinite and poorly weathered Cambisols on peridotite (only in temperate conditions) are the soils with highest availability of Ni. Although soil pH conditions are a major factor in controlling available Ni, the chemical bounds of Ni to containing phases are even more important to consider. Plants take up significant amounts of Ni, and its biogeochemical recycling seems an essential factor that explains Ni availability in the surface horizons of ultramafic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiglsperger T, Proenza JA, Lewis JF, Labrador M, Svojtka M, Rojas-Puron A, Longo F, Durisova J (2016) Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol Rev 73:127–147

    Article  Google Scholar 

  • Alexander EB (2004) Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int Geol Rev 46:754–764

    Article  Google Scholar 

  • Alexander EB (2009) Soil and vegetation differences from peridotite to serpentinite. Northeast Nat 16:178–192

    Article  Google Scholar 

  • Alexander EB (2014) Arid to humid serpentine soils, mineralogy, and vegetation across the Klamath Mountains. Catena 116:114–122

    Article  Google Scholar 

  • Alexander EB, DuShey J (2011) Topographic and soil differences from peridotite to serpentinite. Geomorphology 135:271–276

    Article  Google Scholar 

  • Alves S, Trancoso MA, Simões Gonçalves ML, Correia dos Santos MM (2011) A nickel availability study in serpentinized areas of Portugal. Geoderma 164:155–163

    Article  Google Scholar 

  • Anda M (2012) Cation imbalance and heavy metal content of seven Indonesian soils as affected by elemental compositions of parent rocks. Geoderma 189–190:388–396

    Article  Google Scholar 

  • Antić-Mladenović S, Rinklebe J, Frohne T, Stärk H-J, Wennrich R, Tomić Z, Ličina V (2011) Impact of controlled redox conditions on nickel in a serpentine soil. J Soils Sediments 11:406–415

    Article  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullaj A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Article  Google Scholar 

  • Bani A, Echevarria G, Mullaj A, Reeves R, Morel JL, Sulçe S (2009) Ni hyperaccumulation by Brassicaceae in serpentine soils of Albania and NW Greece. Northeast Nat 16:385–404

    Article  Google Scholar 

  • Bani A, Echevarria G, Montargès-Pelletier E, Sulçe S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186:4431–4442

    Article  Google Scholar 

  • Bani A, Echevarria G, Zhang X, Laubie B, Benizri E, Morel JL, Simonnot M-O (2015) The effect of plant density in nickel phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    Google Scholar 

  • Becquer T, Pétard J, Duwig C, Bourdon E, Moreau R, Herbillon AJ (2001) Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma 103:291–306

    Article  Google Scholar 

  • Becquer T, Quantin C, Rotte-Capet S, Ghanbaja J, Mustin C, Herbillon AJ (2006) Sources of trace metals in ferralsols in New Caledonia. Eur J Soil Sci 57:200–213

    Article  Google Scholar 

  • Bonifacio E, Zanini E, Boero V, Franchini-Angela M (1997) Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75:33–51

    Article  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation. Discorides Press, Portland, Oregon, p 454

    Google Scholar 

  • Caillaud J, Proust D, Righi D, Martin F (2004) Fe-rich clays in a weathering profile developed from serpentinite. Clays Clay Miner 52:779–791

    Article  Google Scholar 

  • Caillaud J, Proust D, Philippe S, Fontaine C, Fialin M (2009) Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 149:199–208

    Article  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li Y-M, Brewer EP, Chen K-Y, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60C:190–198

    Google Scholar 

  • Chardot V, Echevarria G, GuryM MS, Morel JL (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21

    Article  Google Scholar 

  • Chardot-Jacques V, Calvaruso C, Simon B, Turpault MP, Echevarria G, Morel JL (2013) Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata. Environ Sci Technol 47:2612–2620

    Article  Google Scholar 

  • Cheng C-H, Jien S-H, Iizuka Y, Tsai H, Chang Y-H, Hseu Z-Y (2011) Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci Soc Am J 75:659–668

    Article  Google Scholar 

  • Coleman RG, Jove C (1992) Geological origin of serpentinites. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils: Proceedings of the First International conference on serpentine ecology. Intercept, Andover, Hampshire, pp 1–17

    Google Scholar 

  • Colin F, Nahon D, Trescases JJ, Melfi AJ (1990) Lateritic weathering of pyroxenites at Niquelândia, Goiás, Brazil: the supergene behavior of nickel. Econ Geol 85:1010–1023

    Article  Google Scholar 

  • D’Amico ME, Julitta F, Previtali F, Cantelli D (2008) Podzolization over ophiolitic materials in the western Alps (Natural Park of Mont Avic, Aosta Valley, Italy). Geoderma 146:129–136

    Article  Google Scholar 

  • Decarreau A, Colin F, Herbillon A, Manceau A, Nahon D, Paquet H, Trauth-Badaud D, Trescases JJ (1987) Domain segregation in Ni\Fe\Mg smectites. Clays Clay Miner 35:1–10

    Article  Google Scholar 

  • Decrée S, Pourret O, Baele JM (2015) Rare earth element fractionation in heterogenite (CoOOH): implication for cobalt oxidized ore in the Katanga Copperbelt (Democratic Republic of Congo). J Geochem Explor 159:290–301

    Article  Google Scholar 

  • Deng T, Tang Y-T, van der Ent A, Sterckeman T, Echevarria G, Morel JL, Qiu R-L (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45

    Article  Google Scholar 

  • Dilek Y, Furnes H (2009) Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 113:1–20

    Article  Google Scholar 

  • Dublet G, Juillot F, Morin G, Fritsch E, Fandeur D, Ona-Nguema G, Brown GE Jr (2012) Ni speciation in a New Caledonian lateritic regolith: a quantitative X-ray absorption spectroscopy investigation. Geochim Cosmochim Acta 95:119–133

    Article  Google Scholar 

  • Dublet G, Juillot F, Morin G, Fritsch E, Noël V, Brest J, Brown GE Jr (2014) XAS evidence for Ni sequestration by siderite in a lateritic Ni-deposit from New Caledonia. Am Miner 99:225–234

    Article  Google Scholar 

  • Dublet G, Juillot F, Morin G, Fritsch E, Fandeur D, Brown GE Jr (2015) Goethite aging explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia. Geochim Cosmochim Acta 160:1–15

    Article  Google Scholar 

  • Ece OI, Coban F, Gungor N, Suner F (1999) Clay mineralogy and occurrence of ferrian smectites between serpentinite saprolites and basalts in Biga Peninsula, northwest Turkey. Clays Clay Miner 47:241–251

    Article  Google Scholar 

  • Echevarria G, Morel JL (2015) Technosols of mining areas. Tôpicos em Ciência do Solo IX:92–111

    Google Scholar 

  • Echevarria G, Morel JL, Fardeau JC, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27(5):1064–1070

    Article  Google Scholar 

  • Echevarria G, Massoura S, Sterckeman T, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of Ni in soils. Environ Toxicol Chem 25:643–651

    Article  Google Scholar 

  • van der Ent A, Echevarria G, Tibbett M (2016a) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82

    Article  Google Scholar 

  • van der Ent A, Erskine P, Mulligan D, Repin R, Karim R (2016b) Vegetation on ultramafic edaphic ‘islands’ in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation. Plant Soil 403:77–101

    Article  Google Scholar 

  • Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng THB, Tang YT, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–25

    Article  Google Scholar 

  • Fan R, Gerson AR (2011) Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses. Geochim Cosmochim Acta 75:6400–6415

    Article  Google Scholar 

  • Garnier J, Quantin C, Martins ES, Becquer T (2006) Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. J Geochem Explor 88:206–209

    Article  Google Scholar 

  • Garnier J, Quantin C, Echevarria G, Becquer T (2009a) Assessing chromate availability in tropical ultramafic soils using isotopic exchange kinetics. J Soils Sediments 9:468–475

    Article  Google Scholar 

  • Garnier J, Quantin C, Guimaraes E, Garg V, Martins ES, Becquer T (2009b) Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma 151:204–214

    Article  Google Scholar 

  • Gasser UG, Juchler SJ, Hobson WA, Sticher H (1995) The fate of chromium and nickel in subalpine soils derived from serpentinite. Can J Soil Sci 75:187–195

    Article  Google Scholar 

  • Gleeson SA, Butt CRM, Elias M (2003) Nickel laterites: a review. Soc Econ Geol Newsletter 54:1–18

    Google Scholar 

  • Hseu ZY, Tsai H, Hsi HC, Chen YC (2007) Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clay Clay Miner 55:389–401

    Article  Google Scholar 

  • Isnard S, L’Huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant Soil 403:53–76

    Article  Google Scholar 

  • Istok JD, Harward MD (1982) Influence of soil moisture on smectite formation in soils derived from serpentinite. Soil Sci Soc Am J 46:1106–1108

    Article  Google Scholar 

  • IUSS Working Group WRB (2014) World reference base for soil resources, World Soil Resources Reports 106. FAO, Rome

    Google Scholar 

  • Kierczak J, Néel C, Bril H, Puziewicz J (2007) Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma 142:165–177

    Article  Google Scholar 

  • Kierczak J, Pędziwiatr A, Waroszewski J, Modelska M (2016) Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma 268:78–91

    Article  Google Scholar 

  • L’Huillier L, Edighoffer S (1996) Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant Soil 186:255–264

    Article  Google Scholar 

  • Laclau JP, Ranger J, de Moraes Gonçalves JL, Maquère V, Krusche AV, Thongo M’Bou A, Nouvellon Y, Saint-André L, Bouillet JP, de Cassia Piccolo M, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: Main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785

    Article  Google Scholar 

  • Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc Lond 148:825–833

    Article  Google Scholar 

  • Lee BD, Graham RC, Laurent TE, Amrhein C, Creasy RM (2001) Spatial distributions of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Sci Soc Am J 65:1183–1196

    Article  Google Scholar 

  • Lee BD, Sears SK, Graham RC, Amrhein C, Vali H (2003) Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence. Soil Sci Soc Am J 67:1309–1317

    Article  Google Scholar 

  • Lee BD, Graham RC, Laurent TE, Amrhein C (2004) Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma 118:303–320

    Article  Google Scholar 

  • Llorca S, Monchoux P (1991) Supergene cobalt minerals from New Caledonia. Can Mineral 29:149–161

    Google Scholar 

  • Massoura ST (2003) Spéciation et phytodisponibilité du nickel dans les sols. Ph.D. dissertation (in French, abstract in English), Institut National Polytechnique de Lorraine, Nancy, France, 173 pp

    Google Scholar 

  • Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42:933–938

    Article  Google Scholar 

  • Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel JL (2006) Nickel bearing phases and availability in natural and anthropogenic soils. Geoderma 136:28–37

    Article  Google Scholar 

  • McCollom TM, Klein F, Robbins M, Moskowitz B, Berquó TS, Jöns N, Bach W, Templeton A (2016) Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. Geochim Cosmochim Acta 181:175–200

    Article  Google Scholar 

  • McKeague JJ, Day JA (1966) Dithionite and oxalate extractable Fe and Al as aids in differentiating different classes of soils. Can J Soil Sci 46:13–22

    Article  Google Scholar 

  • Nahon D, Colin F, Tardy Y (1982) Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clays Clay Miner 17:339–348

    Article  Google Scholar 

  • O’Hanley DS (1996) Serpentinites: records of tectonic and petrological history. Oxford monographs on geology and geophysics Vol 34. Oxford University Press, New York, p 277

    Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:104–124

    Article  Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–365

    Article  Google Scholar 

  • Quantin C, Ettler V, Garnier J, Sebec O (2008) Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Compt Rendus Geosci 340:872–882

    Article  Google Scholar 

  • Raous S, Becquer T, Garnier J, Martins ES, Echevarria G, Sterckeman T (2010) Mobility of metals in nickel mine spoil materials. Appl Geochem 25:1746–1755

    Article  Google Scholar 

  • Raous S, Echevarria G, Sterckeman T, Hanna K, Thomas F, Martins ES, Becquer T (2013) Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192:111–119

    Article  Google Scholar 

  • Ratié G, Jouvin D, Garnier J, Rouxel O, Miska S, Guimarães E, Cruz Vieira L, Sivry Y, Zelano I, Montargès-Pelletier E (2015) Nickel isotope fractionation during tropical weathering of ultramafic rocks. Chem Geol 402:68–76

    Article  Google Scholar 

  • Rinklebe J, Antić-Mladenović S, Frohne T, Stärk HJ, Tomić Z, Ličina V (2016) Nickel in a serpentine-enriched Fluvisol: redox affected dynamics and binding forms. Geoderma 263:203–214

    Article  Google Scholar 

  • Trescases JJ (1975) L’évolution géochimique supergène des roches ultrabasiques en zone tropicale—formation des gisements nickélifères de Nouvelle-Calédonie. Mémoire ORSTOM, Paris, France

    Google Scholar 

  • Vaughan APM, Scarrow JH (2003) Ophiolite obduction pulses as a proxy indicator of superplume events? Earth Planet Sci Lett 213:407–416

    Article  Google Scholar 

  • Vidal-Torrado P, Macias F, Calvo R, Gomes de Carvalho S, Silva AC (2006) Gênese de solos derivados de rochas ultramáficas serpentinizadas no sudoeste de Minas Gerais. R Bras Ci Solo 30:523–541

    Article  Google Scholar 

  • White AF, Buss HL (2014) 7.4 – Natural Weathering Rates of Silicate Minerals A2 – Holland, Heinrich D. In: Turekian KK (ed) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 115–155

    Google Scholar 

  • Yongue-Fouateu R, Ghogomu RT, Penaye J, Ekodeck GE, Stendal H, Colin F (2006) Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon. J Afr Earth Sci 45:33–47

    Article  Google Scholar 

  • Zelano IO, Sivry Y, Quantin C, Gélabert A, Maury A, Phalyvong K, Benedetti M (2016a) An isotopic exchange kinetic model to assess the speciation of metal available pool in soil: the case of nickel. Environ Sci Technol 50:12848–12856

    Article  Google Scholar 

  • Zelano I, Sivry Y, Quantin C, Gélabert A, Tharaud M, Jouvin D, Montargès-Pelletier E, Garnier J, Pichon R, Nowak S, Miskac S, Abollino O, Benedetti M (2013) Colloids and suspended particulate matters influence on Ni availability in surface waters of impacted ultramafic systems in Brazil. Colloids Surf A Physicochem Eng Asp 435:36–47

    Article  Google Scholar 

  • Zelano I, Sivry Y, Quantin C, Gélabert A, Tharaud M, Nowak S, Garnier J, Malandrino M, Benedetti MF (2016b) Study of Ni exchangeable pool speciation in ultramafic and mining environments with isotopic exchange kinetic data and models. Appl Geochem 64:146–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Echevarria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Echevarria, G. (2018). Genesis and Behaviour of Ultramafic Soils and Consequences for Nickel Biogeochemistry. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_8

Download citation

Publish with us

Policies and ethics