Skip to main content

Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

The aims of this review chapter are to (i) summarize the distribution of halogens in different fluid (surficial, formation and crystalline shield waters, metamorphic, magmatic-hydrothermal-geothermal) and solid (oceanic and continental crust, mantle and core) domains of the Earth, and various extra-terrestrial materials and bodies (meteorites, planets and moons, and the Sun); (ii) briefly discuss characteristic fractionation processes; and direct the reader to other chapters in this volume; (iii) provide an estimate of the total halogen abundance for the Earth and in its dominant reservoirs contributing to the Earth’s halogen endowment; and (iv) discuss some missing observations that could further improve our understanding of halogen abundances and geochemical systematics. Determination of the distribution of the non-radioactive halogen elements (fluorine, F; chlorine, Cl; bromine, Br; and iodine, I) in, and the geochemical processes controlling their mass transfer between, solid and fluid repositories on Earth and in extraterrestrial environments has seen increasing attention in recent years. In part, this has been enabled by the development of dedicated analytical methodologies (e.g., in situ beam methods, secondary ion mass-spectrometer [SIMS], laser ablation-inductively coupled mass-spectrometer [LA-ICPMS], combined noble gas-halogen methods) that can provide a low detection level, accurate and precise determinations of halogen concentrations, and their isotope systematics in complex matrices (e.g., fluid inclusions, glasses, and minerals). However, a key motivation for this method development stems from an increased awareness of the value in halogen characterization for studying specific processes in Earth’s hydrosphere, crust, mantle , and core (e.g., crustal and mantle metasomatism; ore metal transfer; magmatic differentiation and volatile exsolution; fluid reservoir contamination and fluid mixing; mineral-melt-fluid partitioning; and basinal fluid evolution) in which the chemical and isotopic properties of the halogens provide significant advantages over other element groups. These properties include their (i) differential (i.e., temperature- and melt composition-dependent) incompatibility during fluid-melt and mineral-melt partitioning; (ii) collectively highly mobile and volatile nature but with only a few processes capable of fractionating the halogens from one another or leading to significant halogen mass transfer from one repository to another (e.g., the formation of evaporites , fluid phase separation [immiscibility, boiling], crystallization and degassing of magmas, subduction devolatilization and metamorphism); and (iii) strong systematic covariance of Cl and Br, but commonly differential behaviors of F and I (in response to organic processes) in most fluids in the hydrosphere, sediments, crustal rocks in general, the mantle , and mantle-derived lavas. Mass balance calculations show that F is dominantly hosted by mantle and crust, while Cl and Br show nearly identical distribution patterns in which a total of the seawater , formation waters , and evaporites comprise more than half of the Earth’s halogen budget. Experimentally determined metal-silicate partition coefficients suggest that a significant quantity of I is potentially hosted by the Earth’s core .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adam J, Turner M, Hauri EH, Turner S (2016) Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: Comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am Mineral 101(4):876–888

    Article  Google Scholar 

  • Agranier A, Blichert-Toft J, Graham D, Debaille V, Schiano P, Albarède F (2005) The spectra of isotopic heterogeneities along the Mid-Atlantic Ridge. Earth Planet Sci Lett 238:96–109

    Article  Google Scholar 

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263(1):1–8

    Article  Google Scholar 

  • Allègre CJ, Poirier JP, Humler E (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526

    Article  Google Scholar 

  • Alletti M, Baker DR, Freda C (2007) Halogen diffusion in a basaltic melt. Geochim Cosmochim Acta 71:3570–3580

    Article  Google Scholar 

  • Álvarez F, Reich M, Pérez-Fodich A, Snyder G, Muramatsu Y, Vargas G, Fehn U (2015) Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochim Cosmochim Acta 161:50–70

    Article  Google Scholar 

  • Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Angcoy EC Jr, Arnórsson S (2015) Systematics of rare alkalis and Halogens in the high-temperature mahanagdong geothermal field, Leyte, Philippines. In: Proceedings World Geothermal Congress 2015

    Google Scholar 

  • Aranovich L, Safonov OG (2018) Halogens in high-grade metamorphism. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 713–757

    Google Scholar 

  • Aranovich LY, Newton RC, Manning CE (2013) Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth Planet Sci Lett 374:111–120

    Article  Google Scholar 

  • Aranovich L, Prokofiev VY, Pertsev AN, Bortnikov NS, Ageeva OA (2015) Composition and origin of a K2O-rich granite melt in the Mid-Atlantic Ridge, 13°34′N: evidence from the analysis of melt inclusions and minerals of the gabbro-plagiogranite association. Dokl Earth Sci 460(2):174–179

    Article  Google Scholar 

  • Armytage RM, Jephcoat AP, Bouhifd MA, Porcelli D (2013) Metal–silicate partitioning of iodine at high pressures and temperatures: implications for the Earth’s core and 129Xe budgets. Earth Planet Sci Lett 373:140–149

    Article  Google Scholar 

  • Arzamastsev AA, Glaznev VN (2008) Plume-lithosphere interaction in the presence of an ancient sublithospheric mantle keel: an example from the Kola alkaline province. Dokl Earth Sci 419:384–387

    Article  Google Scholar 

  • Asman WA, Slanina J, Baard JH (1981) Meteorological interpretation of the chemical composition of rain-water at one measuring site. Water Air Soil Pollut 16(2):159–175

    Article  Google Scholar 

  • Baasner A, Schmidt BC, Webb SL (2013) Compositional dependence of the rheology of halogen (F, Cl) bearing aluminosilicate melts. Chem Geol 346:172–183

    Article  Google Scholar 

  • Baker DR, Balcone-Boissard H (2009) Halogen diffusion in magmatic systems: Our current state of knowledge. Chem Geol 263(1):82–88

    Article  Google Scholar 

  • Baker T, Mustard R, Fu B, Williams PJ, Dong G, Fisher L, Ryan CG (2008) Mixed messages in iron oxide–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions. Mineral Deposita 43(6):599–608

    Article  Google Scholar 

  • Balchan AS, Drickamer HG (1961) Effect of pressure on the resistance of iodine and selenium. J Chem Phys 34(6):1948–1949

    Article  Google Scholar 

  • Balcone-Boissard H, Baker DR, Villemant B, Boudon G (2009) F and Cl diffusion in phonolitic melts: influence of the Na/K ratio. Chem Geol 263:89–98

    Article  Google Scholar 

  • Banks DA, Yardley BW (1992) Crush-leach analysis of fluid inclusions in small natural and synthetic samples. Geochim Cosmochim Acta 56(1):245–248

    Article  Google Scholar 

  • Banks DA, Giuliani G, Yardley BW, Cheilletz A (2000a) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineral Deposita 35(8):699–713

    Article  Google Scholar 

  • Banks DA, Green R, Cliff RA, Yardley BWD (2000b) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64(10):1785–1789

    Article  Google Scholar 

  • Barnes JD, Sharp ZD (2006) A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process. Chem Geol 228:246–265

    Article  Google Scholar 

  • Barnes JD, Eldam R, Lee C-TA, Errico JC, Loewy S, Cisneros M (2013) Petrogenesis of serpentinites from the Franciscan Complex, Western California, USA. Lithos 178:143–157

    Article  Google Scholar 

  • Barnes JD, Manning C, Scambelluri M, Selverstone J (2018) The behavior of halogens during subduction-zone processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 549–590

    Google Scholar 

  • Baturin GN (1988) The geochemistry of manganese and manganese nodules in the ocean. D. Reidel, Dordrecht, p 356

    Google Scholar 

  • Becker VJ, Manuel OK (1972) Chlorine, bromine, iodine, and uranium in tektites, obsidians, and impact glasses. J Geophys Res 77(32):6353–6359

    Article  Google Scholar 

  • Behne W (1953) Untersuchungen zur Geochemie des Chlor und Brom. Geochim Cosmochim Acta 3(4):186–215

    Article  Google Scholar 

  • Bernini D, Audétat A, Dolejš D, Keppler H (2013) Zircon solubility in aqueous fluids at high temperatures and pressures. Geochim Cosmochim Acta 119:178–187

    Article  Google Scholar 

  • Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337:1–9

    Article  Google Scholar 

  • Biester H, Cortizas AM, Keppler F (2006) Peatlands: evolution and records of environmental and climate changes occurrence and fate of halogens in mires. Elsevier, Boston, pp 465–478

    Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193

    Article  Google Scholar 

  • Böhlke JK, Irwin JJ (1992a) Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi valley type lead-fluorite-barite deposits at Hansonburg, New Mexico. Earth Planet Sci Lett 110(1):51–66

    Article  Google Scholar 

  • Böhlke JK, Irwin JJ (1992b) Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225

    Article  Google Scholar 

  • Böhlke JK, Irwin JJ (1992c) Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: analyses of microstandards and synthetic inclusions in quartz. Geochim Cosmochim Acta 56(1):187–201

    Article  Google Scholar 

  • Böhm A, Schmidt BC (2013) Fluorine and chlorine diffusion in phonolitic melt. Chem Geol 346:162–171

    Article  Google Scholar 

  • Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J (2003) Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chem Geol 194(1):119–141

    Article  Google Scholar 

  • Boiron MC, Cathelineau M, Ruggieri G, Jeanningros A, Gianelli G, Banks DA (2007) Active contact metamorphism and CO2–CH4 fluid production in the Larderello geothermal field (Italy) at depths between 2.3 and 4 km. Chem Geol 237(3):303–328

    Article  Google Scholar 

  • Boneß M, Heumann KG, Haack U (1991) Cl, Br and I analyses of metamorphic and sedimentary rocks by isotope dilution mass spectrometry. Contrib Mineral Petrol 107(1):94–99

    Article  Google Scholar 

  • Bottomley DJ, Gregoire DC, Raven KG (1994) Saline ground waters and brines in the Canadian Shield: geochemical and isotopic evidence for a residual evaporite brine component. Geochim Cosmochim Acta 58(5):1483–1498

    Article  Google Scholar 

  • Bottomley DJ, Katz A, Chan LH, Starinksy A, Douglas M, Clark ID, Raven KG (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chem Geol 155:295–320

    Article  Google Scholar 

  • Boulyga SF, Heumann KG (2005) Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS. Int J Mass Spectrom 242:291–296

    Article  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, London, p 333

    Google Scholar 

  • Boyce JW, Eiler JM, Channon MB (2012) An inversion-based self-calibration for SIMS measurements: application to H, F, and Cl in apatite. Am Mineral 97:1116–1128

    Article  Google Scholar 

  • Boyet M, Carlson RW (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet Sci Lett 250:254–268

    Article  Google Scholar 

  • Brearley AJ, Jones RH (2018) Halogens in chondritic meteorites. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 871–958

    Google Scholar 

  • Brearley AJ, Krot AN (2012) Metasomatism in chondritic meteorites. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 653–782

    Google Scholar 

  • Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Acta, 71

    Google Scholar 

  • Buccianti A (2015) The FOREGS repository: modelling variability in stream water on a continental scale revising classical diagrams from CoDA (compositional data analysis) perspective. J Geochem Explor 154:94–104

    Article  Google Scholar 

  • Bureau H, Métrich N (2003) An experimental study of bromine behaviour in water-saturated silic melts. Geochim Cosmochim Acta 67:1689–1697

    Article  Google Scholar 

  • Bureau H, Kepler H, Metrich N (2000) Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet Sci Lett 183:51–60

    Article  Google Scholar 

  • Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, Price AA, Day JMD, Shimizu N, Kelley KA (2014) Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem Geophys Geosys 15:4445–4467

    Article  Google Scholar 

  • Cameron AGW (1973) Abundances of the elements in the solar system. Space Sci Rev 15:121–146

    Article  Google Scholar 

  • Cannat M (1993) Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J Geophys Research-Solid Earth 98:4163–4172

    Article  Google Scholar 

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. SPE annual fall technical conference and exhibition, Society of Petroleum Engineers

    Google Scholar 

  • Carpenter AB, Trout ML, Pickett EE (1974) Preliminary report on the origin and chemical evolution of lead-and zinc-rich oil field brines in central Mississippi. Econ Geol 69(8):1191–1206

    Article  Google Scholar 

  • Carroll MR, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Rev Mineral Geochem 30(1):231–279

    Google Scholar 

  • Cattermole PJ, Fuge R (1969) The abundances and distribution of fluorine and chlorine in a layered intrusion at Rhiw. North Wales. Geochim Cosmochim Acta 33(10):1295–1298

    Article  Google Scholar 

  • Cawse PA (1987) Trace and major elements in the atmosphere at rural locations in Great Britain, 1972–1981. Spec Publ Br Ecol Soc 1987

    Google Scholar 

  • Channer DMD, Spooner ETC (1992) Analysis of fluid inclusion leachates from quartz by ion chromatography. Geochim Cosmochim Acta 56:249–259

    Article  Google Scholar 

  • Channer DMD, Bray CJ, Spooner ETC (1999) Intergrated cation-anion/volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples. Chem Geol 154:59–82

    Article  Google Scholar 

  • Chen Y, Zhang Y, Liu Y, Guan Y, Eiler J, Stolper EM (2015) Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet Sci Lett 427:37–46

    Article  Google Scholar 

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990) Origin and evolution of formation waters, Alberta basin, western Canada sedimentary basin. I. Chemistry. Appl Geochem 5(4):375–395

    Article  Google Scholar 

  • Correns CW (1956) The geochemistry of the halogens. Phys Chem Earth 1:181–233

    Article  Google Scholar 

  • Cuoco E, Tedesco D, Poreda RJ, Williams JC, De Francesco S, Balagizi C, Darrah TH (2013) Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources. J Hazard Mater 244:570–581

    Article  Google Scholar 

  • Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Mineral Petrol 163(4):591–609

    Article  Google Scholar 

  • Dalou C, Koga KT, Le Voyer M, Shimizu N (2014) Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas. Prog Earth Planet Sci 1(1):1–7

    Article  Google Scholar 

  • Dalou C, Le Losq C, Mysen BO, Cody GD (2015a) Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature. Am Mineral 100(10):2272–2283

    Article  Google Scholar 

  • Dalou C, Mysen BO, Foustoukos D (2015b) In-situ measurements of fluorine and chlorine speciation and partitioning between melts and aqueous fluids in the Na2O-Al2O3-SiO2-H2O system. Am Mineral 100(1):47–58

    Article  Google Scholar 

  • Dawson JB, Fuge R (1980) Halogen content of some African primary carbonatites. Lithos 13(2):139–143

    Article  Google Scholar 

  • Debret B, Koga KT, Nicollet C, Andreani M, Schwartz S (2014) F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova 26:96–101

    Article  Google Scholar 

  • Debret B, Koga KT, Cattani F, Nicollet C (2015) Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones. Lithos 244:165–181

    Article  Google Scholar 

  • Déruelle B, Dreibus G, Jambon A (1992) Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet Sci Lett 108:217–227

    Article  Google Scholar 

  • Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Mineral Petrol 146(6):762–778

    Article  Google Scholar 

  • Dolejš D, Baker DR (2007a) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O−1-H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. J Petrol 48:785–806

    Article  Google Scholar 

  • Dolejš D, Baker DR (2007b) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O−1-H2O to 100 MPa: II. Differentiation paths of fluorosilicic magmas in hydrous systems. J Petrol 48:807–828

    Article  Google Scholar 

  • Dolejš D, Zajacz Z (2018) Halogens in silicic magmas and their hydrothermal systems. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 431–543

    Google Scholar 

  • Dong P (2005) Halogen-element (F, Cl, and Br) behaviour in apatites, scapolite and sodalite: an experimental investigation with field applications. Ph.D. thesis, University of Saskatchewan, Saskatoon, pp 1–222

    Google Scholar 

  • Dreibus G, Wänke H (1987) Volatiles on Earth and Mars: a comparison. Icarus 71:225–240

    Article  Google Scholar 

  • Dreibus G, Wänke H (1990) Comparison of the chemistry of Moon and Mars. Adv Space Res 10:7–16

    Article  Google Scholar 

  • Dreibus G, Jagoutz E, Palme H, Spettel B, Wänke H (1979) Volatile and other trace element abundances in the eucrite parent body and in the Earth’s mantle: A comparison. Meteoritics 14:385

    Google Scholar 

  • Du Y, Ma T, Yang J, Liu L, Shan H, Cai H, Liu C, Chen L (2013) A precise analytical method for bromine stable isotopes in natural waters by GasBench II-IRMS. J Mass Spectrom 338:50–56

    Article  Google Scholar 

  • Edmond JM, Measures C, McDuff RE, Chan LH, Collier R, Grant B (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean; the Galapagos data. Earth Planet Sci Lett 46(1):1–18

    Article  Google Scholar 

  • Edmunds W (1996) Bromine geochemistry of British groundwaters. Mineral Mag 60(399):275–284

    Article  Google Scholar 

  • Edmunds WM, Kay RLF, Miles DL, Cook JM (1987) The origin of saline groundwaters in the Carnmenellis Granite, Cornwall (UK): Further evidence from minor and trace elements. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geological Association of Canada Special Paper 33, pp 127–143

    Google Scholar 

  • Egeberg PK, Aagaard P (1989) Origin and evolution of formation waters from oil fields on the Norwegian shelf. Appl Geochem 4(2):131–142

    Article  Google Scholar 

  • Eggenkamp H (2014) The geochemistry of stable chlorine and bromine isotopes. Springer, Berlin

    Book  Google Scholar 

  • Eggenkamp HGM, Coleman ML (2000) Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem Geol 167:393–402

    Article  Google Scholar 

  • Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175

    Article  Google Scholar 

  • Elderfield H, Truesdale VW (1980) On the biophilic nature of iodine in seawater. Earth Planet Sci Lett 50(1):105–114

    Article  Google Scholar 

  • Enami M, Liou JG, Bird DK (1992) Cl-bearing amphibole in the Salton Sea geothermal system, California. Can Mineral 30(4):1077–1092

    Google Scholar 

  • Evans KA, Mavrogenes JA, O’Neill HSC et al (2008) A preliminary investigation of chlorine XANES in silicate glasses. Geochem Geophys Geosys 9:Q10003

    Google Scholar 

  • Fabbrizio A, Stalder R, Hametner K, Günther D, Marquardt K (2013) Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300 C. Contrib Mineral Petrol 166(2):639–653

    Article  Google Scholar 

  • Fairmaid AM, Kendrick MA, Phillips D, Fu B (2011) The origin and evolution of mineralizing fluids in a sediment-hosted orogenic-gold deposit, Ballarat East, Southeastern Australia. Econ Geol 106(4):653–666

    Article  Google Scholar 

  • Fehn U, Lu Z, Tomaru H (2006) Data report: 129I/I ratios and halogen concentrations in pore water of Hydrate Ridge and their relevance for the origin of gas hydrates: a progress report. In: Trehu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proceedings of the ocean drilling program, Scientific results 204, pp 1–25

    Google Scholar 

  • Fisher RS, Kreitler CW (1987) Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, USA. Appl Geochem 2(5):459–476

    Article  Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93:46–55

    Article  Google Scholar 

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chem Geol 109(1):149–175

    Article  Google Scholar 

  • Forestini M, Goriely S, Jorissen A (1992) Fluorine production in thermal pulses on the asymptotic giant branch. Astron Astrophys 261:157–163

    Google Scholar 

  • Frape SK, Fritz P (1982) The chemistry and isotopic compositions of saline groundwaters from the Sudbury Basin, Ontario. Can J Earth Sci 19:645–661

    Article  Google Scholar 

  • Frape SK, Fritz P (1987) Geochemical trends for groundwaters from the Canadian Shield. In: Saline water and gases in crystalline rocks. Geological Association of Canada, Ottawa, vol 33, pp 19–38

    Google Scholar 

  • Frape SK, Fritz P, McNutt RH (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48:1617–1627

    Article  Google Scholar 

  • Frezzotti ML, Touret JL (2014) CO2, carbonate-rich melts, and brines in the mantle. Geosci Front 5(5):697–710

    Article  Google Scholar 

  • Fu B, Kendrick MA, Fairmaid AM, Phillips D, Wilson CJL, Mernagh TP (2012) New constraints on fluid sources in orogenic gold deposits, Victoria Australia. Mineral Petrol 163:427–447

    Article  Google Scholar 

  • Fuge R (1974) Bromine. Handbook of geochemistry 100:3

    Google Scholar 

  • Fuge R (1988) Sources of halogens in the environment, influences on human and animal health. Environ Geochem Health 10(2):51–61

    Article  Google Scholar 

  • Fuge R (2005) Soils and iodine deficiency. In: Selinus O (ed) Essentials of medical geology. Springer, Heidelberg, p 417

    Google Scholar 

  • Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8(2):31–54

    Article  Google Scholar 

  • Fuge R, Johnson CC, Phillips WJ (1978) Iodine in granitic and associated rocks. Chem Geol 22:347–352

    Article  Google Scholar 

  • Ganapathy R, Keays RR, Laul J, Anders E (1970) Trace elements in Apollo 11 lunar rocks: implications for meteorite influx and origin of moon. Geochim Cosmochim Acta Suppl 1:1117

    Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Gelman F, Halicz L (2011) High-precision isotope ratio analysis of inorganic bromide by continuous flow MC-ICPMS. Int J Mass Spectrom 307:211–213

    Article  Google Scholar 

  • German CR, Von Damm KL (2003) Hydrothermal processes. In Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, The Netherlands, pp 181–222

    Google Scholar 

  • Gerritse RG, George RJ (1988) The role of soil organic matter in the geochemical cycling of chloride and bromide. J Hydrol 101(1):83–95

    Article  Google Scholar 

  • Gillis KM, Meyer PS (2001) Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: evidence from the rare earth element composition of amphiboles. Geochem Geophys Geosys 2:1012

    Article  Google Scholar 

  • Gleeson SA, Smith MP (2009) The sources and evolution of mineralising fluids in iron oxide–copper–gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates. Geochim Cosmochim Acta 73(19):5658–5672

    Article  Google Scholar 

  • Goldberg RH, Burnett DS, Furst MJ, Tombrello TA (1974) Fluorine concentrations in carbonaceous chondrites. Meteoritics 9:347

    Google Scholar 

  • Goldschmidt VM (1926) The laws of crystal chemistry. Naturwissenschaften 14(21):477–485

    Article  Google Scholar 

  • Goles GG, Anders E (1960) Iodine content of meteorites and their 129I–129Xe ages. J Geophys Res 65(12):4181–4184

    Article  Google Scholar 

  • Goles GG, Anders E (1961) Theories on the origin of meteorites. J Chem Educ 38(2):586

    Google Scholar 

  • Goles GG, Anders E (1962) Abundances of iodine tellurium and uranium in meteorites. Geochim Cosmochim Acta 26(7):723–737

    Article  Google Scholar 

  • Goles GG, Greenland LP, Jérome DY (1967) Abundances of chlorine, bromine and iodine in meteorites. Geochim Cosmochim Acta 31:1771–1787

    Article  Google Scholar 

  • Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70(21):5356–5370

    Article  Google Scholar 

  • Grawinkel A, Stöckhert B (1997) Hydrostatic pore fluid pressure to 9 km depth-Fluid inclusion evidence from the KTB deep drill hole. Geophys Res Lett 24(24):3273–3276

    Article  Google Scholar 

  • Greenland L, Lovering JF (1965) Minor and trace element abundances in chondritic meteorites. Geochim Cosmochim Acta 29(8):821–858

    Article  Google Scholar 

  • Groos AF van, Wyllie PJ (1969) Melting relationships in the system NaAlSi3O8-NaCl-H2O at 1 kilobar pressure, with petrological applications. J Geol 77:581–605

    Article  Google Scholar 

  • Gulbrandsen RA (1966) Chemical composition of phosphorites of the phosphoria formation. Geochim Cosmochim Acta 30(8):769–778

    Article  Google Scholar 

  • Hall DNB, Noyes RW (1969) Observation of hydrogen fluoride in sunspots and the determination of the solar fluorine abundance. Astrophys Lett 4:143

    Google Scholar 

  • Hall DNB, Noyes RW (1972) The identification of the 1-0 and 2-1 Bands of HCI in the infrared sunspot spectrum. Astrophys J 175:L95–L97

    Article  Google Scholar 

  • Hall GEM, MacLaurin AI, Vaive J (1986) The analysis of geological materials for fluorine, chlorine and sulfur using pyrohydrolysis and ion chromatrography. J Geochem Explor 26(2):177–186

    Article  Google Scholar 

  • Hammerli J, Rusk B, Spandler C, Emsbo P, Oliver NHS (2013) In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources. Chem Geol 337–338:75–87

    Article  Google Scholar 

  • Hand KP (2018) Halogens on and within the ocean worlds of the outer solar system. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle, Springer, Berlin, pp 997–1016

    Google Scholar 

  • Hanley JJ, Mungall JE, Bray CJ, Gorton MP (2004) The origin of bulk and water-soluble Cl and Br enrichments in ore-hosting Sudbury Breccia in the Fraser Copper Zone, Strathcona Embayment, Sudbury, Ontario, Canada. Can Mineral 42(6):1777–1798

    Article  Google Scholar 

  • Hanley JJ, Pettke T, Mungall JE, Spooner ET (2005) The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800 C: a laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochim Cosmochim Acta 69(10):2593–2611

    Article  Google Scholar 

  • Hanley JJ, Mungall JE, Pettke T, Spooner ET, Bray CJ (2008) Fluid and halide melt inclusions of magmatic origin in the ultramafic and lower banded series, stillwater complex, Montana, USA. J Petrol 49(6):1133–1160

    Article  Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and Entrainment: isotopic evidence. Science 256:517–520

    Article  Google Scholar 

  • Hauri E, Wang J, Dixon J, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 182:99–114

    Article  Google Scholar 

  • Hauri EH (2002) SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem Geol 183:115–141

    Article  Google Scholar 

  • Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734

    Article  Google Scholar 

  • Hauri EH, Saal AE, Rutherford MJ, Van Orman JA (2015) Water in the Moon’s interior: truth and consequences. Earth Planet Sci Lett 409:252–264

    Article  Google Scholar 

  • Hauri EH, Weinreich T, Saal AE, Rutherford M, Van Orman JA (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213

    Article  Google Scholar 

  • Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ Geol 87:1566–1583

    Article  Google Scholar 

  • Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67(18):3473–3497

    Article  Google Scholar 

  • Herut B, Starinsky A, Katz A, Bein A (1990) The role of seawater freezing in the formation of subsurface brines. Geochim Cosmochim Acta 54(1):13–21

    Article  Google Scholar 

  • Hervig RL, Dunbar NW, Westrich HR, Kyle PR (1989) Pre-eruptive water content of rhyolitic magmas as determined by ion microprobe analyses of melt inclusions in phenocrysts. J Volcanol Geotherm Res 36:293–302

    Article  Google Scholar 

  • Holtz F, Dingwell DB, Behrens H (1993) Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contrib Mineral Petrol 113(4):492–501

    Article  Google Scholar 

  • Horn MK, Adams JA (1966) Computer-derived geochemical balances and element abundances. Geochim Cosmochim Acta 30(3):279–297

    Article  Google Scholar 

  • Hurwitz S, Mariner RH, Fehn U, Snyder GT (2005) Systematics of halogen elements and their radioisotopes in thermal springs of the cascade range, Central Oregon, Western USA. Earth Planet Sci Lett 235(3):700–714

    Article  Google Scholar 

  • Icenhower JP, London K (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 Mpa H2O. Contrib Mineral Petrol 127:17–29

    Article  Google Scholar 

  • Irwin JJ, Roedder E (1995) Diverse origins of fluid in magmatic inclusions at Bingham (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall, UK), and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochim Cosmochim Acta 59(2):295–312

    Article  Google Scholar 

  • Ito E, Anderson AT Jr (1983) Submarine metamorphism of gabbros from the Mid-Cayman Rise: petrographic and mineralogic constraints on hydrothermal processes at slow-spreading ridges. Contrib Miner Petrol 82(4):371–388

    Article  Google Scholar 

  • Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47(9):1613–1624

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Waenke H (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Merrill RB, Bogard DD, Hoerz F, McKay DS, Robertson PC (eds) Proceedings of the lunar and planetary science conference, vol 2. Pergamon, New York, pp 2031–2050

    Google Scholar 

  • Jambon A, Zimmermann JL (1990) Water in oceanic basalts: evidence for dehydration of recycled crust. Earth Planet Sci Lett 101(2):323–331

    Article  Google Scholar 

  • Jambon A, Déruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117

    Article  Google Scholar 

  • Jarosewich E (2010) Chemical analyses of meteorites at the Smithsonian Institution: an update. Meteorit Planet Sci 41:1381–1382

    Article  Google Scholar 

  • Joachim B, Pawley A, Lyon IC, Marquardt K, Henkel T, Clay PL, Ruzié L, Burgess R, Ballentine CJ (2015) Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chem Geol 416:65–78

    Article  Google Scholar 

  • John T, Layne GD, Haase KM, Barnes JD (2010) Chlorine isotope evidence for crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 298:175–182

    Article  Google Scholar 

  • John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76

    Article  Google Scholar 

  • Johns WD, Huang WH (1967) Distribution of chlorine in terrestrial rocks. Geochim Cosmochim Acta 31(1):35–49

    Article  Google Scholar 

  • Johnson MC, Anderson AT, Rutherford MJ (1993) Pre-eruptive volatile contents of magmas. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineralogical Society of America, Washington, DC, pp 281–330

    Google Scholar 

  • Johnson LH, Burgess R, Turner G, Milledge HJ, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64(4):717–732

    Article  Google Scholar 

  • Johnson KTM, Reynolds JR, Vonderhaar DL, Smith DK, Kong LSL (2002) Petrological systematics of submarine basalt glasses fromt Puna Ridge, Hawaii: implications for rift zone plumbing and magmatic processes. In: Takahashi E et al (eds) Hawaiian volcanoes: deep underwater perspectives, geophysical monograph, vol 128. American Geophysical Union, Washington, DC, pp 143–159

    Chapter  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32:845

    Article  Google Scholar 

  • Kamenetsky VS, Mitchell RH, Maas R, Giuliani A, Gaboury D, Zhitova L (2015) Chlorine in mantle-derived carbonatite melts revealed by halite in the St.-Honoré intrusion (Québec, Canada). Geology 43(8):687–690

    Article  Google Scholar 

  • Kamineni DC (1986) A petrochemical study of calcic amphiboles from the East Bull Lake anorthosite-gabbro layered complex, District of Algoma, Ontario. Contrib Mineral Petrol 93(4):471–481

    Article  Google Scholar 

  • Kamineni DC, Gascoyne M, Melnyk TW, Frape SK, Blomqvist R (1992) Cl and Br in mafic and ultramafic rocks: significance for the origin of salinity in groundwater. In: Water–rock interaction. Proceedings of the 7th international symposium on water–rock interaction, Park City, UT 1: 801–804

    Google Scholar 

  • Kastner M, Elderfield H, Martin JB, Suess E, Kvenvolden KA, Garrison RE (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin—major constituents and strontium isotopes. In: Suess E, von Huene R (eds) Proceedings of the ocean drilling program, Scientific results. 112:413–440

    Google Scholar 

  • Kato F, Ozaki H, Ebihara M (2000) Distribution of halogens in an Antarctic ordinary chondrite, Y-74014 (H6). Antarct Meteor Res 13:121–134

    Google Scholar 

  • Keene W, Khalil MA, Erickson D, McCulloch A, Graedel TE, Lobert JM, Aucott ML, Gong SL, Harper DB, Kleiman G, Midgley P (1999) Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J Geophys Res: Atmos 104(7):8429–8440

    Article  Google Scholar 

  • Keene WC, Stutz J, Pszenny AA, Maben JR, Fischer EV, Smith AM, von Glasow R, Pechtl S, Sive BC, Varner RK (2007) Inorganic chlorine and bromine in coastal New England air during summer. J Geophy Res: Atmos. 112(D10). https://doi.org/10.1029/2006JD007689

  • Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148:45–53

    Google Scholar 

  • Kelley KA, Kingsley R, Schilling J-G (2013) Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochem Geophys Geosys 14:223–242

    Article  Google Scholar 

  • Kendrick MA (2012) High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem Geol 292–293:116–126

    Article  Google Scholar 

  • Kendrick MA (2018) Halogens in seawater, marine sediments and the altered oceanic lithosphere. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 591–648

    Google Scholar 

  • Kendrick MA, Burnard P (2013) Noble gases and halogens in fluid inclusions: a journey through the Earth’s crust. The noble gases as geochemical tracers. Springer, Berlin, pp 319–369

    Chapter  Google Scholar 

  • Kendrick MA, Phillips D (2009) New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br–Cl–I and 40Ar/39Ar age determinations. Geochim Cosmochim Acta 73(19):5673–5692

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001a) Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids. Geochim Cosmochim Acta 65:2651–2668

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RA, Turner G (2001b) Halogen and Ar–Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem Geol 177(3):351–370

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Leach D, Pattrick RA (2002a) Hydrothermal fluid origins in Mississippi valley-type ore districts: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky fluorspar district, Viburnum Trend, and Tri-State districts, midcontinent United States. Econ Geol 97(3):453–469

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RA, Turner G (2002b) Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-type district: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine ore field United Kingdom. Econ Geol 97(3):435–451

    Article  Google Scholar 

  • Kendrick MA, Duncan R, Phillips D (2006a) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa. Aust Chem Geol 235(3):325–351

    Article  Google Scholar 

  • Kendrick MA, Phillips D, Miller JM (2006b) Part I. Decrepitation and degassing behaviour of quartz up to 1560 C: analysis of noble gases and halogens in complex fluid inclusion assemblages. Geochim Cosmochim Acta 70(10):2540–2561

    Article  Google Scholar 

  • Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008) Noble gas and halogen constraints on regionally extensive mid-crustal Na–Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambr Res 163(1):131–150

    Article  Google Scholar 

  • Kendrick MA, Scambelluri M, Honda M, Phillips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812

    Article  Google Scholar 

  • Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012) Halogen systematics (Cl, Br, I) in mid-ocean ridge basalts: a Macquarie Island case study. Geochim Cosmochim Acta 81:82–93

    Article  Google Scholar 

  • Kendrick MA, Jackson MG, Kent AJR, Hauri EH, Wallace PJ, Woodhead JD (2013a) Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem Geol 370:69–81

    Article  Google Scholar 

  • Kendrick MA, Arculus RJ, Burnard P, Honda M (2013b) Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165

    Article  Google Scholar 

  • Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A (2013c) Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet Sci Lett 365:86–96

    Article  Google Scholar 

  • Kendrick MA, Jackson MG, Kent AJ, Hauri EH, Wallace PJ, Woodhead J (2014) Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem Geol 370:69–81

    Article  Google Scholar 

  • Kendrick MA, Honda M, Vanko DA (2015a) Halogens and noble gases in Mathematician Ridge metagabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles. Contrib Mineral Petrol 170(43):1–20

    Google Scholar 

  • Kendrick MA, Jackson MG, Hauri EH, Phillips D (2015b) The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: Assimilated-seawater, EM2 and high-3He/4He components. Earth Planet Sci Lett 410:197–209

    Article  Google Scholar 

  • Kharaka YK, Maest AS, Carothers WW, Law LM, Lamothe PJ, Fries TL (1987) Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, USA. Appl Geochem 2(5):543–561

    Article  Google Scholar 

  • Klemme S (2004) Evidence for fluoride melts in Earth’s mantle formed by liquid immiscibility. Geology 32:441

    Article  Google Scholar 

  • Klemme S, Stalder R (2018) Halogens in the Earth’s mantle: what we know and what we don’t. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 847–869

    Google Scholar 

  • Klockenkämper R (1996) Total-reflection X-ray fluorescence analysis. Wiley, Hoboken, p 245

    Google Scholar 

  • Köhler J, Schönenberger J, Upton B, Markl G (2009) Halogen and trace-element chemistry in the Gardar Province, South Greenland: subduction-related mantle metasomatism and fluid exsolution from alkali melts. Lithos 113:731–747

    Article  Google Scholar 

  • Kohn SC, Dupree R, Mortuza M, Henderson C (1991) NMR evidence for five-and six-coordinated aluminum fluoride complexes in F-bearing aluminosilicate glasses. Am Mineral 76:309–312

    Google Scholar 

  • Koleszar AM, Saal AE, Hauri EH, Nagle AN, Liang Y, Kurz MD (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287:442–452

    Article  Google Scholar 

  • Krahenbühl U, Ganapathy R, Morgan JW, Anders E (1973) Volatile elements in Apollo 16 samples: implications for highland volcanism and accretion history of the moon. Lunar Planet Sci Conf 4:1325–1348

    Google Scholar 

  • Kronberg BI, Nesbitt HW, Fyfe WS (1987) Mobilities of alkalis, alkaline earths and halogens during weathering. Chem Geol 60(1):41–49

    Article  Google Scholar 

  • Kullerud K, Erambert M (1999) Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid-mineral interaction in the deep crust. Geochim Cosmochim Acta 63(22):3829–3844

    Article  Google Scholar 

  • Lahermo PW, Lampén PH (1987) Brackish and Saline groundwaters in Finland. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geological Association of Canada, Newfoundland, pp 103–109 (Special Paper 33)

    Google Scholar 

  • Land LS (1995a) The role of saline formation water in crustal cycling. Aquat Geochem 1:137–145

    Article  Google Scholar 

  • Land LS (1995b) Na–Ca–Cl saline formation waters, Frio Formation (Oligocene), south Texas, USA: products of diagenesis. Geochim Cosmochim Acta 59(11):2163–2174

    Article  Google Scholar 

  • Lassiter JC, Hauri EH, Nikogosian IK, Barsczus HG (2002) Chlorine–potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth Planet Sci Lett 202:525–540

    Article  Google Scholar 

  • Latourrette T, Hervig RL, Holloway JR (1995) Trace-element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135(1–4):13–30

    Article  Google Scholar 

  • Layne GD, Godon A, Webster JD, Bach W (2004) Secondary ion mass spectrometry for the determination of δ37Cl Part I. Ion microprobe analysis of glasses and fluids. Chem Geol 207:277–289

    Article  Google Scholar 

  • Layne GD, Kent AJR, Bach W (2009) Delta Cl-37 systematics of a backarc spreading system: the Lau basin. Geology 37:42–430

    Article  Google Scholar 

  • Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595

    Article  Google Scholar 

  • Lecumberri-Sanchez P, Bodnar RJ (2018) Halogen geochemistry of ore deposits: contributions towards understanding sources and processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 261–305

    Chapter  Google Scholar 

  • Leisen M, Boiron M-C, Richard A, Dubessy J (2012) Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis: implications for the origin of salinity in crustal fluids. Chem Geol 330–331:197–206

    Article  Google Scholar 

  • Leri AC, Mayer LM, Thornton KR, Ravel B (2014) Bromination of marine particulate organic matter through oxidative mechanisms. Geochim Cosmochim Acta 142:53–63

    Article  Google Scholar 

  • Li Y-H (1982) A brief discussion on the mean oceanic residence time of elements. Geochim Cosmochim Acta 46:2671–2675

    Article  Google Scholar 

  • Li Y-H (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240

    Article  Google Scholar 

  • Lide DR (ed) (2016) CRC Handbook of chemistry and physics, 96th edn. CRC, Boca Raton

    Google Scholar 

  • Lieberman KW (1966) The determination of bromine in terrestrial and extraterrestrial materials by neutron activation analysis. Dept. of Chemistry, Kentucky Univ., Lexington

    Google Scholar 

  • Liebscher A, Barnes J, Sharp Z (2006) Chlorine isotope vapor–liquid fractionation during experimental fluid-phase separation at 400 C/23 MPa to 450 C/42 MPa. Chem Geol 234(3):340–345

    Article  Google Scholar 

  • Liu Y, Tossell J (2003) Possible Al-F bonding environment in fluorine-bearing sodium aluminosilicate glasses: from calculation of 19F NMR shifts. J Phys Chem B 107(41):11280–11289

    Article  Google Scholar 

  • Liu CZ, Wu FY, Chung SL, Zhao ZD (2011) Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology 39:923–926

    Article  Google Scholar 

  • Lodders K (2010) Solar system abundances of the elements. Principles and perspectives in cosmochemistry. Springer, Berlin, pp 379–417

    Chapter  Google Scholar 

  • Lodders K, Fegley B (1997) An oxygen isotope model for the composition of Mars. Icarus 126:373–394

    Article  Google Scholar 

  • Lodders K, Fegley B (1998) The planetary scientist’s companion. Oxford University Press, New York

    Google Scholar 

  • Lodders K, Palme H, Gail HP (2009) Abundances of the elements in the solar system. Astronomy and astrophysics. Springer, Berlin, pp 560–630

    Google Scholar 

  • Long A, Eastoe CJ, Kaufmann RS, Martin JG, Wirt L, Finley JB (1993) High-precision measurements of chlorine stable isotope ratios. Geochim Cosmochim Acta 57:2907–2912

    Article  Google Scholar 

  • Lundegard PD, Trevena AS (1990) Sandstone diagenesis in the Pattani Basin (Gulf of Thailand): history of water-rock interaction and comparison with the Gulf of Mexico. Appl Geochem 5(5):669–685

    Article  Google Scholar 

  • Lundström U, Olin Å, Nydahl F (1984) Determination of low levels of bromide in fresh water after chromatographic enrichment. Talanta 31(1):45–48

    Article  Google Scholar 

  • Luth RW (1988) Raman spectroscopic study of the solubility mechanisms of F in glasses in the system CaO-CaF2-SiO2. Am Mineral 73(3–4):297–305

    Google Scholar 

  • Luth RW, Muncill GE (1989) Fluorine in aluminosilicate systems: phase relations in the system NaAlSi3O8-CaAl2Si2O8-F2O−1. Geochim Cosmochim Acta 53(8):1937–1942

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1 method and results. J Geophys Res 112:B03211

    Google Scholar 

  • Macpherson GL (1992) Regional variations in formation water chemistry: major and minor elements, Frio formation fluids, Texas. AAPG Bullet 76(5):740–757

    Google Scholar 

  • Magenheim AJ, Spivack AJ, Volpe C, Ransom B (1994) Precise determination of stable chlorine isotopic ratios in low-concentration natural samples. Geochim Cosmochim Acta 58:3117–3121

    Article  Google Scholar 

  • Mangler MF, Marks MA, Zaitzev AN, Eby GN, Markl G (2014) Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania): effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chem Geol 365:43–53

    Article  Google Scholar 

  • Manheim FT, Pratt RM, McFarlin PF (1980) Composition and origin of phosphorite deposits of the Blake Plateau. Soc Econ Paleontol Mineral 29:117–137

    Google Scholar 

  • Manning DA (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol 76(2):206–215

    Article  Google Scholar 

  • Markl G, Bucher K (1998a) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391(6669):781–783

    Article  Google Scholar 

  • Markl G, Bucher K (1998b) Metamorphic salt in granulites: implications for the presence and composition of fluid in the lower crust. Nature 391:781–783

    Article  Google Scholar 

  • Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255

    Article  Google Scholar 

  • Marschik R, Kendrick MA (2015) Noble gas and halogen constraints on fluid sources in iron oxide-copper-gold mineralization: Mantoverde and La Candelaria, Northern Chile. Mineral Deposita 50(3):357–371

    Article  Google Scholar 

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. Geochim Cosmochim Acta 57:4377–4389

    Article  Google Scholar 

  • Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major World rivers. Mar Chem 7(3):173–206

    Article  Google Scholar 

  • Mathez ED, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69(5):1275–1286

    Article  Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br(-) and K(+) with halite. J Sediment Res 57(5):928–937

    Google Scholar 

  • McCaig AM, Tritlla J, Banks DA (2000) Fluid mixing and recycling during Pyrenean thrusting: evidence from fluid inclusion halogen ratios. Geochim Cosmochim Acta 64(19):3395–3412

    Article  Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101(36):909

    Google Scholar 

  • McDonough WF (2003) Compositional model for the Earth’s core. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 547–568

    Chapter  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McNutt RH, Frape SK, Fritz P, Jones MG, MacDonald IM (1990) The 87Sr86Sr values of Canadian shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim Cosmochim Acta 54(1):205–215

    Article  Google Scholar 

  • Merino E (1975) Diagenesis in tertiary sandstones from Kettleman North Dome, California. I diagenetic mineralogy. J Sed Res 45(1):320–336

    Google Scholar 

  • Metrich N, Zanon V, Creon L, Hildenbrand A, Moreira M, Marques FO (2014) Is the “Azores Hotspot” a Wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of pico Basalts. J Petrol 55:377–393

    Article  Google Scholar 

  • Mi J-X, Pan Y (2018) Halogen-rich minerals: crystal chemistry and geological significances. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 123–184

    Google Scholar 

  • Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103:18325–18356

    Article  Google Scholar 

  • Michel A, Villemant B (2003) Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials. Geostand Newsl 27(2):163–171

    Article  Google Scholar 

  • Miller TL, Zoller WH, Crowe BM, Finnegan DL (1990) Variations in trace metal and halogen ratios in magmatic gases through an eruptive cycle of the Pu’u O’o vent, Kilauea, Hawaii: July–August 1985. J Geophys Res 95(B8):12607–12615

    Article  Google Scholar 

  • Mittlefehldt DW (2002) Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite bells, and comparison with CI and CM chondrites. Meteorit Planet Sci 37:703–712

    Article  Google Scholar 

  • Moine BN, Cottin J-Y, Shepard SMF, Grégoire M, O’Reilly SY, Giret A (2000) Incompatible trace element and isotopic (D/H) characteristics of amphibole-and phlogopite-bearing ultramafic to mafic xenoliths from Kerguelen Islands (TAAF, South Indian Ocean). Eur J Mineral 12:761–777

    Google Scholar 

  • Moldovanyi EP, Walter LM (1992) Regional trends in water chemistry, smackover formation, Southwest Arkansas: geochemical and physical controls (1). AAPG Bullet 76(6):864–894

    Google Scholar 

  • Möller P, Weise SM, Althaus E, Bach W, Behr HJ, Borchardt R, Bräuer K, Drescher J, Erzinger J, Faber E, Hansen BT (1997) Paleofluids and recent fluids in the upper continental crust: results from the German Continental deep drilling program (KTB). J Geophys Res: Solid Earth 102(8):18233–18254

    Article  Google Scholar 

  • Morad S, Ismail HB, Ros LD, Al-Aasm IS, Serrhini NE (1994) Diagenesis and formation water chemistry of Triassic reservoir sandstones from southern Tunisia. Sedimentology 41(6):1253–1272

    Article  Google Scholar 

  • Morgan JW, Anders E (1979) Chemical composition of Mars. Geochim Cosmochim Acta 43:1601–1610

    Article  Google Scholar 

  • Morrison JA (1991) Chemistry of the polyhedral boron halides and the diboron tetrahalides. Chem Rev 91(1):35–48

    Article  Google Scholar 

  • Mungall JE, Brenan JM (2003) Experimental evidence for the chalcophile behavior of the halogens. Can Mineral 41:207–220

    Article  Google Scholar 

  • Munoz JL (1984) F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Rev Mineral Geochem 13(1):469–493

    Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the Earth’s crust. Chem Geol 147:201–216

    Article  Google Scholar 

  • Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R (2007) Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl Geochem 22:534–556

    Article  Google Scholar 

  • Musashi M, Markl G, Kreulen R (1998) Stable chlorine-isotope analysis of rock samples: new aspects of chlorine extraction. Anal Chim Acta 362:261–269

    Article  Google Scholar 

  • Mysen BO, Richet P (2005) Silicate glasses and melts. Elsevier, Amsterdam

    Google Scholar 

  • Mysen BO, Virgo D (1985) Structure and properties of fluorine-bearing aluminosilicate melts: the system Na2O-Al2O3-SiO2-F at 1 atm. Contrib Mineral Petrol 91(3):205–220

    Article  Google Scholar 

  • Mysen BO, Cody GD, Smith A (2004) Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim Cosmochim Acta 68(12):2745–2769

    Article  Google Scholar 

  • Nahnybida T, Gleeson SA, Rusk BG, Wassenaar LI (2009) Cl/Br ratios and stable chlorine isotope analysis of magmatic–hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah. Mineral Deposita 44(8):837–848

    Article  Google Scholar 

  • Nakamoto T, Oura Y, Ebihara M (2007) Comparative study of activation analyses for the determination of trace halogens in geological and cosmochemical samples. Anal Sci 23:1113–1119

    Article  Google Scholar 

  • Neal C, Smith CJ, Walls J, Billingham P, Hill S, Neal M (1990) Hydrogeochemical variations in Hafren forest stream waters, mid-Wales. J Hydrol 116(1):185–200

    Article  Google Scholar 

  • Noll K, Dobeli M, Krahenbühl U, Grambole D, Herrmann F, Koeberl C (2003) Detection of terrestrial fluorine by proton induced gamma emission (PIGE). A rapid quantification for Antarctic meteorites. Meteorit Planet Sci 38:759–765

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2012) Mantle Metasomatism. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock (Lecture notes in Earth System Sciences). Springer, Berlin, pp 471–533

    Google Scholar 

  • Oberti R, Ghose S (1993) Crystal-chemistry of a complex Mn-bearing alkali amphibole (tirodite’) on the verge of exsolution. Eur J Mineral 5(6):1153–1160

    Article  Google Scholar 

  • Palme H, Jones A (2003) Solar system abundances of the elements. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 1. Elsevier, Amsterdam, pp 41–61

    Chapter  Google Scholar 

  • Palme H, O’Neill H St C (2003) Cosmochemical estimates of mantle composition. In: Holland HD, Turrekia KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Pan Y, Dong P (2003) Bromine in scapolite-group minerals and sodalite: XRF microprobe analysis, exchange experiments, and application to skarn deposits. Can Mineral 41(2):529–540

    Article  Google Scholar 

  • Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Pauling L, Huggins ML (1934) Covalent radii of atoms and interatomic distances in crystals containing electron-pair bonds. Z Kristallogr-Cryst Mater 87(1):205–238

    Google Scholar 

  • Pearson FJ (1985) Sondierbohrung Boettstein-results of hydrochemical investigations: analysis and interpretation. Nationale Genossenschaft fuer die Lagerung Radioaktiver Abfaelle NAGRA, Switzerland

    Google Scholar 

  • Pearson DG, Canil D, Shirey S, Holland H, Turrekian KK (2003) Mantle samples included in volcanic rocks: xenoliths and diamond. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 171–275

    Chapter  Google Scholar 

  • Peters MT, Baker MB, Burnett DS (1995) The partitioning of iodine between sulfide liquid and silicate liquid: implications for the cosmochemistry of iodine. Lunar Planet Sci Conf 26:1115–1116

    Google Scholar 

  • Peters NE, Ratcliffe ER, Tranter M (1998) Tracing solute mobility at the Panola Mountain Research Watershed, Georgia, USA. In: Kovar K, Tappeiner U, Peters NE, Craig RG (eds) Hydrology, water resources and ecology in headwaters, vol 248. IAHS, Wallingford

    Google Scholar 

  • Philippot P, Agrinier P, Scambelluri M (1998) Chlorine cycling during subduction of altered oceanic crust. Earth Planet Sci Lett 161(1):33–44

    Article  Google Scholar 

  • Piccoli PM, Candela PA (1993) Magmatic-Hydrothermal volatile history of the Billy Lake-Rush Creek volcano-plutonic complex, ritter range, Sierra Nevada Batholith, California. EOS Trans Am Geophys Union 74:333

    Google Scholar 

  • Price NB, Calvert SE (1970) Compositional variation in Pacific Ocean ferromanganese nodules and its relationship to sediment accumulation rates. Mar Geol 9(3):145–171

    Article  Google Scholar 

  • Price NB, Calvert SE (1977) The contrasting geochemical behaviours of iodine and bromine in recent sediments from the Namibian shelf. Geochim Cosmochim Acta 41(12):1769–1775

    Article  Google Scholar 

  • Pyle DM, Mather T (2009) Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem Geol 263:110–121

    Article  Google Scholar 

  • Rabinovich EM (1983) Structural role of fluorine in silicate glasses. Phys Chem Glasses 24(2):54–56

    Google Scholar 

  • Ramberg H (1952) Chemical bonds and distribution of cations in silicates. J Geol 1:331–355

    Article  Google Scholar 

  • Rampe EB, Ming DW, Blake DF et al (2017) Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet Sci Lett 471:172–185. https://doi.org/10.1016/j.epsl.2017.04.021

  • Rampe EB, Cartwright JA, McCubbin FM, Osterloo MM (2018) The role of halogens during fluid and magmatic processes on Mars. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 959–995

    Google Scholar 

  • Reed GW Jr (1964) Fluorine in stone meteorites. Geochim Cosmochim Acta 28:1729–1743

    Article  Google Scholar 

  • Reed GW Jr, Ralph OA Jr (1966) Halogens in chondrites. Geochim Cosmochim Acta 30:779–800

    Article  Google Scholar 

  • Renno AD, Franz L, Witzke T, Herzig PM (2004) The coexistence of melts of hydrous copper chloride, sulfide and silicate compositions in a magnesiohastingsite cumulate, TUBAF seamount, Papua New Guinea. Can Mineral 42:1–16

    Article  Google Scholar 

  • Ringwood AE (1962a) A model for the upper mantle. J Geophys Res: Solid Earth 67:857–867

    Article  Google Scholar 

  • Ringwood AE (1962b) A model for the upper mantle: 2. J Geophys Res: Solid Earth 67:4473–4478

    Article  Google Scholar 

  • Rose-Koga EF, Shimizu N, Devidal J, Koga KT, Le Voyer M (2008) Investigation of F, S, and Cl standards by ion probe and electron microprobe. EOS Trans Am Geophys Union 89(53), Fall Meet Suppl, Abstract V31B-2145

    Google Scholar 

  • Rose-Koga EF, Koga KT, Schiano P, Le Voyer M, Shimizu N, Whitehouse MJ, Clocchiatti R (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279

    Article  Google Scholar 

  • Rose-Koga EF, Koga KT, Hamada M, Helouis T, Whitehouse MJ, Shimizu N (2014) Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planet Space 66:81

    Article  Google Scholar 

  • Rose-Koga EF, Koga KT, Moreira M, Vlastelic I, Jackson MG, Whitehouse MJ, Shizimu N, Habib N (2017) Geochemical systematics of Pb isotopes, fluorine and sulfur in melt inclusions from São Miguel, Azores. Chem Geol 458:22–37

    Google Scholar 

  • Rosenbaum JM, Cliff RA, Coleman ML (2000) Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements. Anal Chem 72:2261–2264

    Article  Google Scholar 

  • Rosenthal A, Hauri EH, Hirschmann MM (2015) Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet Sci Lett 412:77–87

    Article  Google Scholar 

  • Ross JE, Aller LH (1976) The chemical composition of the Sun. Science 191:1223–1229

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Ryan CG, Heinrich CA, Mernagh TP (1993) PIXE Microanalysis of fluid inclusions and its application to study ore metal segregation between magmatic brine and vapor. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mat Atom 77:463–471

    Article  Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Article  Google Scholar 

  • Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MJ, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195

    Article  Google Scholar 

  • Sakai N, Takemura K, Tsuji K (1982) Electrical properties of high-pressure metallic modification of iodine. J Phys Soc Jpn 516:1811–1816

    Article  Google Scholar 

  • Salminen R (ed), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant, JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, Espoo

    Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:1525–2027

    Article  Google Scholar 

  • Sander R, Keene WC, Pszenny AA, Arimoto R, Ayers GP, Baboukas E, Cainey JM, Crutzen PJ, Duce RA, Hönninger G, Huebert BJ (2003) Inorganic bromine in the marine boundary layer: a critical review. Atmos Chem Phys 3(5):1301–1336

    Article  Google Scholar 

  • Sanders LL (1991) Geochemistry of formation waters from the Lower Silurian Clinton formation (Albion Sandstone), Eastern Ohio. AAPG Bullet 75(10):1593–1608

    Google Scholar 

  • Sarafian AR, Roden MF, Patiño-Douce AE (2013) The volatile content of Vesta: clues from apatite in eucrites. Meteorit Planet Sci 48:2135–2154

    Article  Google Scholar 

  • Schaller T, Dingwell DB, Keppler H, Knöller W, Merwin L, Sebald A (1992) Fluorine in silicate glasses: a multinuclear nuclear magnetic resonance study. Geochim Cosmochim Acta 56:701–707

    Article  Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67(17):3267–3281

    Article  Google Scholar 

  • Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636

    Article  Google Scholar 

  • Schilling J, Bergeron M, Evans R (1980) Halogens in the mantle beneath the North Atlantic. Philos Trans R Soc A297:147–178

    Article  Google Scholar 

  • Schnetger B, Muramatsu Y (1996) Determination of halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst 121(11):1627–1631

    Article  Google Scholar 

  • Sekimoto S, Ebihara M (2013) Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data. Anal Chem 85:6336–6341

    Article  Google Scholar 

  • Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CA (2011) Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem Geol 284:35–44

    Google Scholar 

  • Sharp ZD, Draper DS (2013) The chlorine abundance of Earth: implications for a habitable Planet. Earth Planet Sci Lett 369–370:71–77

    Article  Google Scholar 

  • Sharp ZD, Mercer JA, Jones RH, Brearley AJ, Selverstone J, Bekker A, Stachel T (2013) The chlorine isotope composition of chondrites and Earth. Geochim Cosmochim Acta 107:189–204

    Article  Google Scholar 

  • Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM (2010) Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322

    Article  Google Scholar 

  • Shimizu K, Yamauchi T, Tamitani N, Takeshita N, Ishizuka M, Amaya K, Endo S (1994) The pressure-induced superconductivity of iodine. J Supercond 7(6):921–924

    Article  Google Scholar 

  • Shimizu K, Alberto ES, Corinne EM, Ashley NN, Erik HH, Donald WF, Vadim SK, Yaoling N (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim Cosmochim Acta 176:44–80

    Article  Google Scholar 

  • Shinohara H, Iiyama JT, Matsuo S (1989) Partition of chlorine compounds between silicate melt and hydrothermal solutions: I. partition of NaCl-KCl. Geochim Cosmochim Acta 53(10):2617–2630

    Article  Google Scholar 

  • Shouakar-Stash O, Frape SK, Drimmie RJ (2005) Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal Chem 77:4027–4033

    Article  Google Scholar 

  • Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22(3):589–605

    Article  Google Scholar 

  • Simpson WR, Brown SS, Saiz-Lopez A, Thornton JA, Glasow RV (2015) Tropospheric Halogen Chemistry: sources, cycling, and impacts. Chem Rev 115:4035–4062

    Article  Google Scholar 

  • Smart RP, Soulsby C, Cresser MS, Wade A, Townend J, Billett MF, Langan SJ (2001) Riparian zone influence on stream water chemistry at different spatial scales: a GIS based modelling approach, an example for the Dee, NE Scotland. Sci Total Environ 280:173–193

    Article  Google Scholar 

  • Starinsky A (1974) Relationship between Ca-chloride brines and sedimentary rocks in Israel. Doctoral dissertation

    Google Scholar 

  • Stix J, Layne GD, Spell TL (1995) The behavior of light lithophile and halogen elements in felsic magma: geochemistry of the post-caldera Valles Rhyolites, Jemez Mountains Volcanic Field, New Mexico. J Volcanol Gertherm Res 67:61–77

    Article  Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Article  Google Scholar 

  • Stromer JC, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648

    Google Scholar 

  • Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA. Geochim Cosmochim Acta 55(1):309–325

    Article  Google Scholar 

  • Stueber AM, Walter LM, Huston TJ, Pushkar P (1993) Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: chemical and isotopic constraints on evolution and migration. Geochim Cosmochim Acta 57(4):763–784

    Article  Google Scholar 

  • Sugiura T (1968) Bromine to chlorine ratios in igneous rocks. Bull Chem Soc Jpn 41(5):1133–1139

    Article  Google Scholar 

  • Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet Sci Lett 294:163–172

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Banks DA, Austrheim H (2001a) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, Western Norway. J Metamorph Geol 19:165–178

    Article  Google Scholar 

  • Svensen H, Jamtveit B, Banks DA, Karlsen D (2001b) Fluids and halogens at the diagenetic-metamorphic boundary: evidence from veins in continental basins, Western Norway. Geofluids 1:53–70

    Article  Google Scholar 

  • Swindle TD, Caffee MW, Hohenberg CM, Taylor SR (1986) I-Pu-Xe dating and the relative ages of the earth and moon. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the moon. Lunar Planet Institute, Houston, pp 331–357

    Google Scholar 

  • Swindle TD, Caffee MW, Hohenberg CM, Lindstrom MM, Taylor GJ (1991) Iodine-xenon studies of petrographically and chemically characterized Chainpur chondrules. Geochim Cosmochim Acta 55(3):861–880

    Article  Google Scholar 

  • Symonds RB, Rose WI, Bluth GJ, Gerlach TM (1994) Volcanic-gas studies; methods, results, and applications. Rev Mineral Geochem 30(1):1–66

    Google Scholar 

  • Taylor GJ (2013) The bulk composition of Mars. Chem Erde-Geochem 73:401–420

    Article  Google Scholar 

  • Teague AJ, Hanley J, Seward TM, Reutten F (2011) Trace-element distribution between coexisting aqueous fumarole condensates and natrocarbonatite lavas at Oldoinyo Lengai volcano, Tanzania. Geol Soc Am Spec Pap 478:159–172

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull 72:175–192

    Article  Google Scholar 

  • Unni CK, Schilling JG (1977) Determination of bromine in silicate rocks by epithermal neutron activation analysis. Anal Chem 49:1998–2000 (Washington, D.C.)

    Article  Google Scholar 

  • Unni CK, Schilling JG (1978) Cl and Br degassing by volcanism along the Reykjanes Ridge and Iceland. Nature 272:19–23

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581. https://doi.org/10.1039/JR9470000562 (London)

  • Van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373

    Article  Google Scholar 

  • Vasyukova O, Williams-Jones AE (2014) Fluoride–silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim Cosmochim Acta 139:110–130

    Google Scholar 

  • Vasyukova O, Williams-Jones AE (2016) The evolution of immiscible silicate and fluoride melts: implications for REE ore-genesis. Geochim Cosmochim Acta 172:205–224

    Google Scholar 

  • Veksler IV, Dorfman AM, Kamanetsky M, Dulski P, Dingwell DB (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim Cosmochim Acta 69:2847–2860

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevksy LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfide melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Vigneresse JL (2009) Evaluation of the chemical reactivity of the fluid phase through hard–soft acid–base concepts in magmatic intrusions with applications to ore generation. Chem Geol 263(1):69–81

    Article  Google Scholar 

  • Vinogradov AP (1961) The origin of the material of the Earth’s crust. Communication 1(1):1–52

    Google Scholar 

  • Volfinger M, Robert JL, Vielzeuf D, Neiva AM (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim Cosmochim Acta 49(1):37–48

    Article  Google Scholar 

  • Vovk IF (1987) Radiolytic salt enrichment and brines in the crystalline basement of the East European platform. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geological Association of Canada (Special Paper 33). The Runge, Ottawa, pp 197–210

    Google Scholar 

  • Wallace P, Anderson AT (2000) Volatiles in magmas. In: Sigurdsson H, Houghton BF, Mcnutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 149–170

    Google Scholar 

  • Wang X, Li G, Zhang Q, Wang Y (2004) Determination of major, minor and trace elements in seamount phosphorite by XRF spectrometry. Geostand Geoanal Res 28:81–88

    Article  Google Scholar 

  • Wänke H, Dreibus G (1988) Chemical composition and accretion history of terrestrial planets. Philos Trans R Soc London Ser A 325:545–557

    Article  Google Scholar 

  • Wänke H, Baddenhausen H, Palme H (1974) On the chemistry of the Allende inclusions and their origin as high temperature condensates. Earth Planet Sci Lett 23:1–7

    Article  Google Scholar 

  • Wanless VD, Shaw AM (2012) Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat Geosci 5:651–655

    Article  Google Scholar 

  • Wasson JT, Kallemeyn GW (1988) Compositions of chondrites. Philos Trans R Soc A: Math Phys Eng Sci 325:535–544

    Article  Google Scholar 

  • Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol Soc Am Spec Pap 246:21–34

    Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84(1):116–134

    Article  Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73(3):559–581

    Article  Google Scholar 

  • Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430

    Google Scholar 

  • Wedepohl KH (1987) The chlorine and sulfur crustal cycle–abundance of evaporites. Geochemistry and mineral formation in the Earth surface, p 3–27

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  Google Scholar 

  • Wedepohl KH, Hartmann G (1994) The composition of the primitive upper Earth’s mantle. In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks and mantle xenoliths. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, 1, pp 486–495

    Google Scholar 

  • Whitfield M, Turner DR (1972) Water–rock partition coefficients and the composition of seawater and river water. Nature 278:132–137

    Article  Google Scholar 

  • Wilson TRS (1975) Salinity and the major elements of seawater. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic, New York, pp 365–413

    Google Scholar 

  • Wilson TP, Long DT (1993a) Geochemistry and isotope chemistry of Michigan Basin brines: Devonian formations. Appl Geochem 8(1):81–100

    Article  Google Scholar 

  • Wilson TP, Long DT (1993b) Geochemistry and isotope chemistry of Ca Na Cl brines in Silurian strata, Michigan Basin, USA. Appl Geochem 8(1):81–100

    Article  Google Scholar 

  • Witter JB, Kuehner SM (2004) A simple empirical method for high-quality electron microprobe analysis of fluorine at trace levels in Fe-bearing minerals and glasses. Am Mineral 89:57–63

    Google Scholar 

  • Wong GTF, Brewer PG (1974) The determination and distribution of iodate in South Atlantic waters. J Mar Res 32(1):25–36

    Google Scholar 

  • Woosley SE, Haxton WC (1988) Supernova neutrinos, neutral currents and the origin of fluorine. Nature 334:45–47

    Article  Google Scholar 

  • Worden RH (1996) Controls on halogen concentrations in sedimentary formation waters. Mineral Mag 60(399):259–274

    Article  Google Scholar 

  • Worden RH (2018) Halogen elements in sedimentary systems and their evolution during diagenesis. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geo-chemical processes: surface, crust, and mantle. Springer, Berlin, pp 185–260

    Chapter  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Workman RK, Hart SR, Jackson MG, Regelous M, Farley KA, Blusztajn J, Kurz MD, Staudigel H (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem Geophys Geosys 5:Q04008

    Article  Google Scholar 

  • Workman RK, Hauri EH, Hart SR, Wang J, Blusztajn J (2006) Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet Sci Lett 241:932–951

    Article  Google Scholar 

  • Wu J, Koga KT (2013) Fluorine partitioning between hydrous minerals and aqueous fluid at GPa and 770–947 °C: a new constraint on slab flux. Geochim Cosmochim Acta 119:77–92

    Article  Google Scholar 

  • Wyllie PJ, Tuttle OF (1964) Experimental investigation of silicate systems containing two volatile components. Part III. The effects of SO3, P2O5, HCl, and Li2O, in addition to H2O, on the melting temperatures of albite and granite. Am J Sci 262:930–939

    Article  Google Scholar 

  • Xiao YK, Zhang CG (1992) High precision isotopic measurements of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. Int J Mass Spectrom Ion Process 116:183–192

    Article  Google Scholar 

  • Yardley BW (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100(4):613–632

    Article  Google Scholar 

  • Yardley BW (2009) The role of water in crustal evolution. J Geol Soc London 166:613–632

    Article  Google Scholar 

  • Yardley BW (2013) The chemical composition of metamorphic fluids in the crust. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Berlin, pp 17–51

    Chapter  Google Scholar 

  • Yardley BW, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3(1):127

    Article  Google Scholar 

  • Yardley BW, Graham JT (2002) Origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Article  Google Scholar 

  • Yardley BW, Banks DA, Bottrell SH, Diamond LW (1993) Post-metamorphic gold-quartz veins from NW Italy: the composition and origin of the ore fluid. Mineral Mag 57:407

    Article  Google Scholar 

  • Yardley BW, Banks DA, Barnicoat AC (2000) The chemistry of crustal brines: tracking their origins. In: Porter TM (ed) Hydrothermal iron oxide coper gold and related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp 61–70

    Google Scholar 

  • Yuita K (1984) Iodine, bromine and chlorine content of soils and plants of Japan, 2: Iodine, bromine and chlorine content of the andosols and plants of central Honshu [Japan]. Jpn J Soil Sci Plant Nutr, Japan

    Google Scholar 

  • Zeng Q, Stebbins JF (2000) Fluoride sites in aluminosilicate glasses: high-resolution 19F NMR results. Am Mineral 85(5–6):863–867

    Article  Google Scholar 

  • Zherebtsova IK, Volkova NN (1966) Experimental study of the behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk-Sivash brine. Geochem Int 3:656–670

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob J. Hanley .

Editor information

Editors and Affiliations

Appendix

Appendix

Schilling et al. (1980)

Sample name

F [ppm]

Cl [ppm]

Br [ppm]

I [ppm]

AII0073-1-005-002

314

112

0.25

 

N-1

326

21

0.1

 

TRI0089-021-001

560

632

1.39

 

TRI0089-030-002-5

388

166

0.31

 

TRI0119-004-SG

375

213

0.46

 

TRI0119-006-010

270

74

0.16

 

TRI0119-007-SG

550

403

0.9

 

TRI0122-003-SG

175

70

0.24

 

TRI0123-001-005A

210

67

0.16

 

TRI0123-004-007

522

64

0.24

 

TRI0123-005-003

225

57

0.11

 

TRI0138-001-002

394

218

0.5

 

TRI0138-002-003

225

61

0.18

 

TRI0138-005-SG

245

37

0.09

 

TRI0138-006-001

280

24

0.09

 

TRI0138-007-001

150

16

0.06

 

TRI0138-008-001

180

34

0.06

 

TRI0138-009-002

200

15

0.05

 

TRI0138-011-001

289

23

0.06

 

TRI0154-007-002

215

122

0.29

 

TRI0154-008-001

495

387

0.94

 

TRI0154-010-003

547

774

1.76

 

TRI0154-012-001

339

267

0.64

 

TRI0154-013-002

199

106

0.25

 

TRI0154-014-004

295

223

0.66

 

TRI0154-017-002

260

104

0.28

 

TRI0154-018-002

149

53

0.14

 

TRI0154-019-002

266

67

0.17

 

TRI0154-020-003

335

295

0.79

 

TRI0154-021-003

520

384

0.93

 

TRI0164-016-003

239

159

0.36

 

Jambon et al. (1995); Deruelle et al. (1992)

Sample name

F [ppm]

Cl [ppm]

Br [ppm]

I [ppm]

ALV0981-R026

 

30

0.082

0.0025

CHR0097-002

 

413

0.46

0.0065

CHR0097-005

 

519

1.32

0.363

CHR0098-010

 

24

0.159

0.012

CHR0098-011

 

28

0.09

0.011

CHR0098-012

 

45

0.064

0.0063

CHR0098-015

 

43

0.062

0.0084

CHR0098-017

 

89

0.196

0.0051

CHRCLIP-001-005V

 

62

0.392

0.0066

CYA1982-009-003

 

91

0.208

0.0094

CYA1982-018-001

 

130

0.3

0.0081

CYA1982-027-001

 

142

0.378

0.0044

CYA1982-031-002

 

67

0.158

0.013

Kendrick et al. (2013c)

Sample name

F [ppm]

Cl [ppm]

Br [ppb]

I [ppb]

Alv-529-4

 

111

300

4.5

Alv-523-1

 

135

350

7.2

Alv-526-5

 

167

446

8.2

Alv-525-5-2

 

81

215

3.2

Alv-527-1-1

 

39

95

1.6

CH98-DR08g3

 

630

1900

20

CH98-DR11

 

32

97

2

2pD43-1

 

282

730

14

2pD43-2

 

285

740

15

2pD43-3

 

265

689

12

2pD43-4

 

290

757

15

Alv-2262-8

 

86

256

2.5

Alv-2269-2

 

154

488

2.9

Alv-1652-3

 

3790

13600

27

Alv-1652-10

 

340

1230

2.4

Alv-1652-5

 

3870

13900

28

CL-DR01

 

92

309

3.7

Kendrick et al. (2011)

Sample name

F [ppm]

Cl [ppm]

Br [ppb]

I [ppb]

47979-a

 

114

400

12

47979-b

 

121

382

17

47979-c

 

146

499

86

47979-dd

 

131

436

14

GG256-a

 

681

2142

50

GG256-be

 

658

2101

52

60701

 

435

1375

33

G882b

 

955

3124

76

GG53a-a

 

512

1645

39

GG53a-b

 

440

1512

36

47963

 

1356

4565

109

G465

 

225

764

22

G452a

 

71

262

10

G929a-a

 

498

1671

44

G929a-be

 

537

1703

44

G499a

 

392

1313

98

G860a

 

517

1825

33

25603

 

799

2640

60

MQ650

 

375

1277

31

40428

 

494

1580

36

25601

 

845

2853

65

38287

 

504

1632

37

LB197a

 

842

2970

56

Kendrick et al. (2013b)

Dredge name

F [ppm]

Cl [ppm]

Br [ppb]

I [ppb]

490_610

 

860

3000

53

760_770

 

630

2100

33

1290_1420

 

500

1700

38

1970_2080

 

420

1300

27

1610_1860

 

280

870

22

1610_1860

 

860

2500

58

1610_1860

 

270

840

21

2800_2850

 

670

2100

51

410

 

660

2100

37

2500_2820

 

550

1900

53

2500_2700a

 

610

1900

28

2500_2700

 

1000

2800

46

2500_3000a

 

1340

3600

70

2500_3000a

 

1450

3700

71

2500_3000a

 

1380

3500

67

2100_2600

 

960

3700

42

2360_2800

 

590

1700

38

3000_3500

 

1030

2900

77

2200_2660

 

1180

3500

49

2100_2600

 

1210

3600

59

Kendrick et al. (2015)

Sample name

F [ppm]

Cl [ppm]

Br [ppb]

I [ppb]

68-03

930

1565

6288

59

70-01

840

1006

3832

47

71-02

900

1793

7229

82

71-11

920

1605

5478

56

71-13

880

1524

6512

74

71-22

1030

1529

6580

71

73-03

1000

1595

6603

75

73-12

980

1360

5415

59

74-02

1870

869

2478

41

75-02

1370

717

2116

46

75-10

1230

653

1893

40

76-03

1180

1611

5625

72

76-08-a

1240

1372

4892

69

76-11

1230

1616

6218

67

77-09

1600

1071

3554

70

78-01-a

1250

955

3470

83

104-04

1030

1088

3809

18.7

128-21

1270

1046

3001

93

Jagoutz et al. (1979)

Sample name

F [ppm]

Cl [ppm]

Br [ppm]

Ka168

7.7

1.93

0.022

D1

12.6

2

0.013

Fr1

10.6

1.3

0.012

SC1

16.3

0.95

0.008

KH1

8.8

0.39

0.0051

Po1

6.8

1.4

0.007

Cabral et al. (2014)

Sample Name

F [ppm]

Cl [ppm]

MGA-B-25-1

1469

718

MGA-B-25-2

1406

948

MGA-B-25-4

1518

983

MGA-B-47-AES6

1583

890

MGA-B-47-AES7

1509

277

MGA-B-47-AES8

1498

666

MGA-B-47-RAC2

1188

512

MGA-B-47-RAC3

1370

714

MGA-B-47-RAC4

1357

626

MGA-B-47-RAC7

1305

502

MGA-B-47-RAC10

1426

467

MGA-B-47-RAC11

1328

552

MGA-B-47-RAC16

1356

806

MG1001-1

1416

723

MG1001-2Bc

1478

753

MG1001-3b

1742

761

MG1001-5

1352

249

MG1001-6c

1476

641

MG1001-7c

1402

698

MG1001-9

1515

620

MG1001-10

1509

779

MG1001-14c

1390

528

MG1001-17c

1406

523

MG1001A1

1300

700

MG1001A3A

1359

583

MG1001A3B

1260

505

MG1001A5

1463

598

MG1001A6

1420

585

MG1001A9

1123

505

MG1001A10

1468

685

MG1001A11

1588

589

MG1001A12

1438

377

MG1001A14

1073

526

MG1001A15

1480

689

MG1001A16

1481

768

MG1001A17

1503

713

MG1001A18A

1573

733

MG1001A19A

1578

513

MG1001A20A

1549

778

MG1001A20B

1449

514

MG1006-7c

1950

732

Metrich et al. (2014)

Sample name

F [ppm]

Cl [ppm]

D-C

899.667

655.667

D-E

955.667

602

D-F

940.667

698.667

D-G

992

778.333

D-H

1018.667

772

E-9

1027.333

611.333

E-52

861

488

E-23

842.333

677.333

E-51

1116

772.667

C-1a

742

382.333

C-1b

837.333

375

C-28a

754

608.667

C-32a

901.667

678

C-32b

908.333

596.667

C-38

863.333

354.333

C-40

1179.667

523

C-47

779.333

330.667

C-49 emb

1000.667

613.333

C-20

1250.333

788.667

C-26

872

679.333

C-29a

1324.667

748.667

C-29b emb

1442.333

900

C-41 emb

1002

465.333

C-39

1099.333

775.667

Workman et al. (2004, 2006)

Sample name

F [ppm]

Cl [ppm]

68-34

935

1296

71-03

860

1598

71-03

879

1256

71-06

874

719

72-12

1107

541

72-12

1022

517

76-07

1129

1403

76-08

1233

1411

76-10

1182

1279

76-13

1150

1295

76-14

1170

1470

77-06

1239

1051

Glass

903

1490

Glass

980

1752

Glass

937

1651

Glass

865

1558

Glass

972

1718

Glass

1064

1478

Glass

947

1656

Glass

966

1744

Glass

1026

1610

Glass

915

1522

Glass

878

1366

Glass

967

1267

Glass

949

1708

Glass

918

1545

Glass

944

1775

Glass

957

1715

Glass

1110

1670

Glass

960

1726

Glass

983

1818

Glass

962

1711

Glass

973

1754

Glass

990

1400

Glass

1056

1377

Glass

1077

1570

Glass

1188

670

Glass

1060

623

Glass

1148

598

Glass

867

547

Glass

1050

596

Glass

1109

628

Glass

921

567

Glass

801

651

Glass

1872

982

Glass

802

451

Glass

1871

975

Glass

1866

990

Glass

1856

928

Glass

818

469

Glass

1854

971

Glass

1887

1023

Glass

1339

689

Glass

1371

734

Glass

1235

657

Glass

1338

692

Glass

1262

674

Glass

1291

551

Glass

1240

534

Glass

1234

526

Glass

1245

531

Glass

1448

629

Glass

1299

536

Glass

1216

519

Glass

1311

574

Glass

1219

520

Glass

1294

541

Glass

1175

514

Glass

1222

1283

Glass

1220

1361

Glass

1180

1074

Glass

1237

1348

Glass

1182

925

Glass

1236

1195

Glass

1300

1725

Glass

1236

1403

Glass

1409

1541

Glass

1228

1615

Glass

1245

1396

Glass

1221

1436

Glass

1211

1562

Glass

1173

1055

Glass

1254

1004

Glass

1226

968

Glass

1310

1021

Glass

1206

886

Koleszar et al. (2009)

Sample name

F [ppm]

Cl [ppm]

D25C-2-02

301

74

D25C-2-06

304

135

D25C-2-09

387

115

D25C-2-12

462

47

D25C-2-16A

419

142

D25C-2-19A

387

154

D25C-2-19B

372

109

D25C-2-21A

389

96

D25C-2-21B

380

111

D25C-2-21C

420

129

D25C-2-24D

330

13

D25C-2-25A

340

119

D25C-2-26

332

113

D25C-2-27

437

155

D25C-2-29D

515

15

D25C-2-30v

377

113

D25C-2-34

412

117

D25C-2-35D

409

46

D25C-2-37

406

105

D25C-2-38B

408

102

D25C-2-38C

379

91

D25C-2-39AD

243

6

D25C-2-39B

263

105

D25C-2-40A

457

90

D25C-2-40B

398

76

D25C-2-44vD

520

20

D25C-2-46vD

522

4

D25C-2-48

395

125

D25C-2-51v

397

159

D25C-2-52A

376

110

D25C-2-52BD

351

22

D25C-2-53A

288

99

D25C-2-53B

267

100

D25C-2-54

389

148

D25C-2-55

297

106

D25C-2-56v

317

74

D25C-2-57D

283

1

D25C-2-58

378

134

D25C-2-59

424

138

D25C-2-62v

440

138

D25C-3-02

419

131

D25C-3-07v

394

138

D25C-3-08

399

136

D25C-3-10

404

92

D25C-3-12

350

129

D25C-3-14v

508

156

D25C-3-18

307

86

D25C-3-20

452

98

D25C-3-21D

364

31

D25C-3-23D

432

26

D25C-3-28

390

131

D25C-3-29

452

147

D25C-3-30v

315

112

D25C-3-31

414

123

D25C-3-33

442

144

D25C-3-34vD

337

62

D25C-3-35

292

140

D25C-3-37v

421

127

D25C-3-38v

477

170

D25C-3-41A

387

108

D25C-3-41B

398

119

D25C-3-42

372

138

D25C-3-43

293

118

D25C-3-44

394

185

D25C-3-46

469

152

D25C-3-47D

355

5

D25C-3-48

462

145

D25C-3-49

324

80

D25C-3-50

465

137

D25C-3-52

318

106

D25C-3-55D

428

84

D25C-3-56

343

104

D25C-3-58

347

113

D25C-3-62

299

116

STG06-29-02B

140

21

STG06-29-03

140

25

STG06-29-04

135

14

STG06-29-06

176

35

STG06-29-07

136

25

STG06-29-08

129

18

STG06-29-09v

115

19

STG06-29-10E

337

133

STG06-29-11Av

149

30

STG06-29-12

137

29

STG06-29-13

150

26

STG06-29-14v

145

16

STG06-29-15

141

26

STG06-29-16A

157

27

STG06-29-16B

155

26

STG06-29-16C

133

22

STG06-29-16D

135

23

STG06-29-17

141

22

STG06-29-19D

94

7

STG06-29-20

138

24

STG06-29-21

148

28

STG06-29-23A

113

19

STG06-29-23B

101

16

STG06-29-24

138

26

STG06-29-25A

165

28

STG06-29-27

163

26

STG06-29-29

155

27

STG06-29-32

146

23

STG06-29-34A

128

23

STG06-29-34B

134

27

STG06-29-35A

173

13

STG06-29-35B

184

15

STG06-29-37A

120

21

STG06-29-39

141

27

STG06-29-40

145

26

STG06-29-42A

88

15

STG06-29-42B

130

24

STG06-29-43

131

22

STG06-29-44

151

25

STG06-29-47

138

24

Lassiter et al. (2002)

Sample name

F [ppm]

Cl [ppm]

RVV310m5

1680

122

RVV310m15

1849

200

RVV310m21

1347

204

AVE RVV310

1576

241

RVV370m13

1369

222

RVV370m20

1386

305

RVV370m34

1735

311

AVE RVV370

1514

314

RPA502m8b

1472

467

RPA502m26

1605

606

RPA502m37

1468

478

AVE RPA502

1478

413

RVV318m20

2751

645

RVV318m25

2438

900

RVV318m28

3525

1296

AVE RVV318

2706

723

RVV318m22

3107

21689

RVV318m45

2956

17912

RVV318m47

2925

21497

RVV318m48

3338

19943

RVV318m49

3109

16520

Hauri et al. (2002)

Sample name

F [ppm]

Cl [ppm]

KK31-12

446

162

KK31-12

675

358

KK31-12

683

392

KK31-12

629

375

KK31-12

494

435

KK31-12

535

300

KK31-12

704

201

KK31-12

659

209

KK31-12

567

13940

KK31-12

559

315

MK91-6

316

66

MK91-6

453

67

MK91-6

498

93

MK91-6

469

112

MK91-6

457

95

MK91-6

487

87

MK91-6

466

84

MK91-6

468

96

MK91-6

476

93

MK91-6

488

122

MK91-6

444

164

MK91-6

494

83

MK91-6

446

114

MK91-6

515

108

MK91-6

483

105

MK91-6

522

129

MK91-6

503

117

MK91-6

345

89

MK91-6

512

94

MK91-6

559

84

MK91-6

567

76

MK91-6

549

85

MK91-6

490

57

MK91-6

471

84

MK91-6

444

95

MK91-6

439

90

MK91-6

449

142

MK91-6

535

224

MK91-6

553

344

MK91-6

490

91

KS87-24

446

99

KS87-24

460

68

KS87-24

377

64

KS87-24

420

76

KS87-24

371

78

KS87-24

397

72

KS87-24

388

70

KS87-24

481

67

KS87-24

356

66

KS87-24

365

64

KS87-24

361

74

KS87-24

417

75

KS87-24

413

72

KS87-24

465

85

KS87-24

360

74

KS87-24

442

73

KS87-24

395

74

KS87-24

448

73

KS87-24

1002

73

KS87-24

975

76

KS87-24

429

67

KS87-24

434

68

KS87-24

446

85

KS87-24

384

68

KS87-24

460

64

KS87-24

435

61

KS87-24

433

73

KOO-17A

669

22

KOO-17A

476

160

KOO-17A

380

229

KOO-17A

344

142

KOO-17A

843

20

KOO-17A

670

25

KOO-17A

662

17

KOO-17A

510

93

KOO-17A

308

577

KOO-17A

665

32

KOO-17A

722

28

KOO-17A

680

13

KOO-17A

620

16

KOO-17A

478

30

KOO-17A

516

38

KOO-17A

384

20

KOO-17A

548

15

KOO-49

461

27

KOO-49

460

25

KOO-49

451

35

KOO-49

437

33

KOO-49

540

51

KOO-49

515

34

KOO-49

676

29

KOO-49

611

54

KOO-49

453

16

KOO-49

575

28

KOO-49

657

27

KOO-49

469

24

KOO-49

514

37

KOO-49

457

38

KOO-49

552

28

KOO-49

629

9

KOO-49

766

15

KOO-49

686

8

KOO-49

609

25

KOO-49

492

23

KOO-49

646

43

KOO-49

400

38

Johnson et al. (2002)

Sample name

F [ppm]

Cl [ppm]

PRD1-3

448

714

PRD1-4

481

627

PRD1-5

414

619

PRD3-1

472

197

PRD4-3

532

325

PRD4-6

614

240

PRD5-1

547

660

PRD5-2

443

748

PRD6-1

534

241

PRD6-2

316

452

PRD7-1

520

233

PRD7-2

503

279

PRD8-1

458

185

PRD9-3

462

187

PRD10-1

366

187

PRD12-1

474

175

PRD13-1

394

155

PRD14-1

457

201.5

PRD14-2

498

211

PRD14-3

463

185

PRD15-1

495

201

PRD17-1

451

263

PRD17-2

572

243

PRD17-4

520

217

PRD19-2

428

181

PRD20-1

554

179

PRD21-1

441

186

PRD22-3

343

131

PRC1GL1

359

134

PRC1LIMU

326.5

142.5

PRC1DKPUM

676

309

PRC1LTSPIND

670

209

PRC1DKSPIND

302

135.5

PRC1LTPUM

597

176

PRC8SPIND

591

195

PRC8PUM

643.5

188

PRC11

716

297

PRC12

704

301

PRC16PUM

599

220

PRC16SPIND

494.5

169.5

PRC17SPIND

522

178

PRC18

538

222

PRC18LIMU

614

264

PRC18PUM

646

215

PRC18SPIND

598

243

PRC18TEAR

444

132

PRC23SPAT

451

310

PRC23PUM1

261

113

PRC23PUM2

282

104

PRC24GL1

612

251.5

PRC24GL2

473

177

PRC24LIMU

606

268

PRC24SPAT

571

378

PRC26

451

243

PRC27

601

249

PRC28

685

274

PRC28SPIND

699

256

PRC29SPIND

472

252

PRC30

470

203

PRC30LIMU

494

159

PRC30SPIND

429.5

278

PRC31GL1

515

263

PRC32SPAT

443

234

PRC34GL1

407

200

PRC34GL2

555

238

PRC35

479

208

PRC35SPAT

444

242

PRC35FROTH

397

422

PRC36

473

211

PRC39

466

191

PRC41

476

189

PRC45GL

495

189

PRC45SPIND

405

276

PRC46GL

498

177

PRC46TEAR

649

232

PRC47GL1

515.5

231

PRC47GL2

591

215

PRC47DPUM

805

247

PRC47SPIND

632

192

PRC47LIMU

354

225

PRC47TEAR1

456

305

PRC47TEAR2

601

194

PRC48GL

594

199

PRC48SPIND

548

199

PRC49GL1

505

155

PRC49GL2

472

178

PRC51SPIND

664

204

PRC53SPIND

617

195

PRC53TEAR

346

137

PRC54LIMU

545

186

PRC55GL1

706

262

PRC55GL2

674.5

282.5

PRC55TEAR

451

138

PRC56GL1

710

239

PRC56TEAR

552

206

S492-R1

458

187

S492-R6

481

209

S495-R1

800

322

São Miguel (Rose-Koga et al. 2017)

Sample name

F [ppm]

Cl [ppm]

ACO95-03a

1017

551

ACO95-03a-2

1000

625

ACO95-03b

893

585

ACO95-03b-2

893

585

ACO95-56a

637

592

ACO95-56c

785

909

ACO95-56e

773

601

ACO95-56e-2

773

601

ACO95-56f

1399

860

ACO95-56f-2

1046

920

ACO95-56g

1185

732

ACO95-56g-2

1185

732

ACO95-62b

782

582

ACO95-62c

808

940

ACO95-62d

918

863

ACO95-62d-2

918

863

ACO95-62i

997

335

ACO95-62i-2

1016

388

ACO95-62h

860

481

ACO95-68a

1023

618

ACO95-68b

896

479

a4-2-00

1199

574

a4-2-00-2

1199

574

a4-4-00

1252

966

a4-5-00

1261

682

a4-6-00

1088

205

a9-1-00

990

540

a9-2-00

1073

539

a9-4-00

1198

493

Laubier (2006)

Sample name

F [ppm]

Cl [ppm]

CAI5-A6

341

219

CAI5-A’6

369

235

NEI1-2-A1

463

273

NEI1-2-F1

507

339

NEI1-2-B5

518

271

MAU2-F3

595

269

MAU3-E1

595

303

MAU3-D7

568

335

MAU4-F3

500

260

MAU4-A6

529

323

MAU4-F8

330

200

Shaw et al. (2010)

Sample name

F [ppm]

Cl [ppm]

12-1_1

157

27

12-1_2

155

27

12-1_4

140

24

12-1_5

141

24

12-1_6

159

28

12-1_7a

171

22

12-1_7b

158

26

12-1_7b

153

25

12-1_8

158

27

12-1_9

149

26

12-1_10

156

24

12-1_12

152

27

12-1_14

156

27

13-1_3

157

30

13-1_5

168

198

13-1_6

150

21

13-1_8

160

26

13-1_9

156

28

13-1_10

153

27

13-1_15

159

24

13-1_16a

157

24

13-1_16a

157

24

13-1_16b

158

28

13-1_17

157

22

13-1_18

157

30

13-1_19

162

27

13-1_21

160

25

13-1_22

158

27

Wanless and Shaw (2012)

Sample name

F [ppm]

Cl [ppm]

4203-6-1-21

118

51

4203-6-1-22

112

49

4203-6-2-24

109

51

4203-6-3-25

101

48

4203-6-6-30

96

46

4203-6-10-32

99

49

4203-6-11-35

102

48

4203-6-12-36

97

47

4203-6-13a-38

101

48

4203-6-13b-39

93

46

4203-6-14-41

94

48

4203-6-15-42

151

67

4203-6-16a-43

94

46

4203-6-16b-44

97

48

4203-6-16c-45

89

46

4203-6-17a-47

122

47

4203-6-17b-50

107

44

4203-6-20a-51

96

48

4203-6-20b-52

136

54

4203-6-21-54

123

54

4203-6-24a-55

97

45

4203-6-25a-56

98

49

4203-6-25b-59

136

46

4204-6-33-61

175

49

4204-6-34-62

101

37

4204-6-35-63

158

49

4204-6-37b-65

125

45

4204-6-39-66

148

66

4204-6-43a-67

111

55

4204-6-43b-68

123

61

4204-6-44-72

124

54

4204-6-45-73

106

45

4204-6-46a-74

168

60

4204-9-49-79

145

43

4204-9-50-80

100

50

4204-9-55-83

97

35

4204-9-56-87

112

51

4204-9-57a-88

96

50

4204-9-57b-89

100

47

4204-9-58-90

102

49

4204-9-60-91

105

48

4204-9-61-93

101

46

4204-9-62-94

105

49

4204-9-65-95

103

48

4204-9-66-98

102

50

4204-9-73-99

100

51

4204-9-74-100

108

48

4204-9-75b-102

102

52

4204-9-75a-101

108

50

4204-9-81-104a

97

47

4204-9-81-104b

108

53

4204-9-81-104c

108

52

4203-2-2a-122

77

44

4203-2-2b-123

79

43

4203-2-3-124

96

42

4203-2-4-125

89

45

4203-2-5-126

97

48

4203-2-6-127

87

43

4203-2-8-128

81

45

4203-2-10a-129

90

45

4203-2-13a-130

85

42

4203-2-13b-131

88

43

4203-2-16a-133

16

10

4203-2-17-134

85

45

4203-2-18-135

18

11

4203-2-21a-136

77

40

4203-2-29a-138

103

49

4203-2-30-139

91

46

4203-2-33a-140

85

44

4203-2-33b-141

78

45

4203-2-39-142

92

44

4203-2-44-143

86

43

2737-3x_97

106

48

2737-3x_99

120

47

2737-3x_100

134

21

2737-3x_101

127

40

2737-3x_103

109

48

2737-3x_104

131

29

2737-3x_109

119

25

2737-3x_112

130

32

2737-3x_113

125

31

2737-3x_117

116

35

2737-3x_125

126

35

2737-3x_123

115

24

2737-3x_128

111

25

2737-3x_129

133

35

2737-3x_131

128

34

2737-3x_132

118

39

2737-3x_122

101

25

2737-3x_120

109

34

1248N_1

189

49

1248N_2

176

39

1248N_3r

342

65

1248N_5

171

41

1248N_7

180

43

1248N_9

197

58

1248N_10

170

38

1248N_11

177

48

1248N_12

183

41

1248N_14

173

38

1248N_15

179

44

1248N_17

185

9

1248N_19

175

37

1248N_24

184

37

1248N_25

178

43

1248N_26

149

69

1248N_29

179

46

1248N_30a

173

42

1248N_30b

177

40

1248N_36

187

34

1248N_37

195

30

1248N_39

202

51

1248N_40

181

40

1248N_41

189

42

1248N_43a

177

47

1248N_43b

178

39

1248N_44

175

45

1248N_45

179

44

sample

F

Cl

DR12A_3_1

127

75

DR12A_3_2

114

53

DR12A_3_5

129

48

DR12A_3_6

125

135

DR12A_3_7

131

74

DR12A_3_10

127

52

DR12A_3_12

121

24

DR12A_3_15

123

94

DR12A_3_20

123

62

DR12A_1_21

123

17

DR12A_1_22

115

58

DR12A_1_23

109

103

DR12A_1_30

119

86

DR12A_1_35

114

95

DR12A_1_36

115

103

DR12A_1_38

62

24

DR12A_1_34

113

15

DR12A_2_39

94

28

DR12A_2_49a

118

59

DR12A_2_49b

122

63

DR12A_2_50

111

51

DR12A_7_54

126

37

DR12A_7_57

127

58

DR12A_7_58

124

38

DR12A_2_60

126

60

DR12A_7_62a

103

32

DR12A_7_62b

103

28

DR12A_7_65

122

62

DR12A_7_66

120

64

DR12A_7_72

112

56

DR12A_7_76b

120

67

DR12A_7_76a

125

73

DR12A_7_81

116

163

DR12A_7_83

130

4

DR12A_7_84a

122

66

DR12A_7_84b

118

64

DR12A_7_90

117

56

ATV181_2

186

133

ATV181_10

174

81

ATV181_11

186

95

ATV181_13

185

113

ATV181_14a

204

128

ATV181_14b

201

135

ATV181_16

192

103

ATV181_19

192

103

Glass data from PETDB

Sample name

F [ppm]

Cl [ppm]

AII0073-1-005-002

314

112

AII0073-1-005-002

314

112

AII0073-1-005-002

314

112

AII0107-6-056-027

110

14

AII0107-6-057-008

370

170

AII0107-6-057-019

240

40

AII0125-11-010

212

901

AII0125-11-011

160

315

AII0125-11-012-A

133

217

AII0125-11-012-B

129

998

AII0125-11-013

312

823

AII0125-11-017

146

756

AII0125-11-018

157

896

AII1991-020-001

83.6

3.4

AII1991-020-005

82.4

17.5

ALV0906-R001

30

20

ALV0906-R003

50

10

ALV0907-R001

60

130

ALV0907-R003

80

10

ALV0910-R003

40

70

ALV0910-R004

30

60

ALV0911-R005

80

140

ALV0912-R006

60

30

ALV0916-R008

120

140

ALV0918-R001

50

10

ALV0994-005B

100

400

ALV1002-004B

200

3400

ALV1181-005

140

790

ALV1181-006

70

610

ALV2077-003

138

154

ALV2078-004

124

254

ALV2079-006b

141

151

ALV2080-001a

140

213

ALV2092-002

137

151

ALV2261-003

112

1014

ALV2262-004

134

1571

ALV2262-007

132

911

ALV2262-009

141

616

ALV2263-001

151

529

ALV2263-006B

202

795

ALV2263-007

198

2046

ALV2263-008

204

911

ALV2264-001a

155

321

ALV2264-002

135

1529

ALV2266-001

130

1407

ALV2266-002

133

1513

ALV2268-002

198

1690

ALV2268-003

191

2580

ALV2268-004

194

1358

ALV2269-001

139

2283

ALV2269-002

155

2987

ALV2269-003

132

219

ALV2355-008

206

54

ALV2356-007

213

53

ALV2358-003

239

59

ALV2365-003

241

82

ALV2384-001

84.7

20.9

ALV2384-002

89.1

16.9

ALV2384-003

104.3

18.3

ALV2384-006

94

2.92

ALV2384-009

96.4

19.4

ALV2390-005

630

241

ALV2430-001

163

969

ALV2430-002

198

292

ALV2432-001

165

433

ALV2432-002

180

560

ALV2489-002

422

799

ALV2489-005

434

425

ALV2489-009

355

522

ALV2490-003

189

42

ALV2490-010

193

44

ALV2497-001B

201

42

ALV2697-001

197

30

ALV2759-005

268

62

ALV2768-004

321

702

ALV2768-006

222

119

CHN0115-4-003

150

42

CHN0115-4-008

430

170

END0112-002-001

120

46

END0112-004-001

250

400

END0112-005-005

150

40

END0112-005-010

180

50

END0112-005-011

210

50

END0112-006-001

150

60

END0112-007-002

40

24

END0112-007-004

310

650

END0112-007-013

390

1090

END0113-003-001

320

190

ENV7115-077-006

250

220

ENV7714-033-A

260

150

ENV7714-036-002

90

460

ENV7906-032-001

250

130

ENV7906-032-039

380

280

ENVCSM5-003-002

470

330

ENVCSM5-005-001

212

420

ENVCSM5-008-001

360

370

ENVCSM5-010-001

310

230

GIL7202-076-004

140

140

GIL7202-081-005

250

530

GIL7202-082-002

220

720

GIL7202-084-002

190

280

GIL7202-087-001

280

620

GIL7202-087-012

140

210

GIL7202-089-008

350

570

GIL7202-090-002

200

180

GIL7202-090-004

260

170

GIL7202-094-004

180

220

GIL7202-094-006

100

30

KAK1979-012-040

100

300

KAK1979-012-057

200

900

KAK1979-018-021

100

600

MELVULC-5-024-017

370

120

MELVULC-5-027-019

190

54

MELVULC-5-027-034

480

200

MELVULC-5-030-060

350

120

MELVULC-5-042-010

370

440

N-1

326

21

NHOCHEP-003-003

218

131

NHOCHEP-006-001

338

163

NHOCHEP-015-006

235

42

NHOCHEP-024-007

287

45

NHOCHEP-031-004

312

222

NHOCHEP-116-002

428

214

NHOCHEP-116-003

140

71

NHOCHEP-121-002

277

369

PS4CSM4-1501-001

460

670

PS4CSM4-1502-009

580

800

PS4CSM4-1506-002

230

120

TRI0041-018-002

93

62

TRI0041-022-001

142

64

TRI0101-003-006

80

60

TRI0101-011-002

458

173

TRI0101-027-001

172

140

TRI0101-030-012G

232

65

TRI0101-035-003G

236

185

TRI0139-016-001

100

210

TRI0139-030-002

590

600

TRI0139-031-002

200

110

TRI0139-032-002

230

140

TRI0139-033-001

250

140

WASVNTR-006

292

99

WASVNTR-007-A

272

82

WASVNTR-010

119

44

WASVNTR-024-A

280

122

WASVNTR-026

260

355

WASVNTR-027-C

191

39

WASVNTR-029-B

237

229

WASVNTR-029-C

101

13.5

Saal et al. (2002)

Sample name

F [ppm]

Cl [ppm]

Siq1-1

98

1.5

Siq1-2

90

2.0

Siq1-3

85

1.7

Siq1-4

80

2.3

Siq1-5

84

1.5

Siq1-6

84

1.6

Siq1-7

80

2.3

Siq1-8

85

1.1

Siq1-9-1

86

1.7

Siq1-9-2*

97

1.7

Siq2-1

107

2.0

Siq2-2

83

2.6

Siq2-3-1

90

1.2

Siq2-3-2

84

1.4

Siq2-4

81

2.6

Siq2-5

91

3.2

Siq3-9

135

1.7

Siq3-10-1

95

1.6

Siq3-11

96

1.8

Siq6-1

79

2.4

Siq6-2-1

92

2.2

Siq6-2-2

105

1.8

Siq6-3

87

1.9

Siq6-4

85

4.0

Siq6-4A

81

4.1

Siq6-5

85

1.5

Siq6-6-1

87

1.5

Siq6-6-2

89

1.3

Siq6-7-1

93

1.5

Siq6-7-2

92

1.5

Siq6-7-3

87

1.7

Siq9-1-2-3

77

1.0

Siq9-1-3

78

1.6

Siq9-1-4

79

1.3

Siq9-1-5

79

1.1

Siq9-1-6

77

1.3

A-1

81

1.5

A-2

88

1.1

A-3

81

1.9

A-4

79

1.9

A-5

84

1.6

A-7

82

2.0

A-8-1

74

2.3

A-8-2*

71

2.1

A-10

50

1.7

A-11

74

1.9

D-6-1

83

1.5

D-6-2*

85

1.3

D-6-3*

81

1.3

D-7

86

2.3

D-8

80

2.6

D-9

80

2.0

D-10-1

82

1.9

Siq2-6

90

2.5

Siq2-7-1

90

1.7

Siq2-7-2

91

1.6

Siq2-7-3

88

1.5

Siq2-8-1.

90

1.6

Siq2-8-2.

97

1.5

Siq2-9.

92

2.0

Siq2-10.

83

1.9

Siq3-1.

125

2.4

Siq3-2.

89

1.8

Siq3-3.

89

2.0

Siq3-4.

90

2.1

Siq3-5

88

1.2

Siq3-6

97

2.4

Siq3-7

107

3.3

Siq3-8

102

1.6

Siq6-8

82

1.9

Siq6-9

88

2.8

Siq9-1

77

1.9

Siq9-2

89

1.0

Siq9-3-1

91

13.7

Siq9-3-2

86

1.2

Siq9-4

79

2.4

Siq9-5

81

2.3

Siq9-6-1

87

1.4

Siq9-6-2

88

1.4

Siq9-7

83

2.3

Siq9-8-1

85

1.1

Siq9-8-2

83

1.1

Siq9-1-1

94

6.8

Siq9-1-2-1

80

1.1

Siq9-1-2-2

78

1.0

A-12-2

85

1.3

A-14-1

65

1.1

A-15

89

2.5

A-16-1

73

3.0

A-16-2*

72

0.8

A-17

77

1.9

D-1-1

93

2.1

D-1-2

84

1.7

D-2

87

2.2

D-3-2

70

2.4

D-4

71

0.8

D-5

79

2.0

D-11

86

2.0

D-12-1

85

1.4

D-12-2

80

1.1

2384-1

85

20.9

2384-2

89

16.9

2384-3

104

18.3

2384-6

81

2.9

2384-9

96

19.4

A25-D20-5

82

17.5

A25-D20-1

84

3.4

Glossary of acronyms

BSE

Bulk silicate earth

CC

Continental crust

CF

Continuous flow

DM

Depleted mantle

EMPA

Electron microprobe analyzer

ENAA

Epithermal neutron activation analysis

GC

Gas chromatography

IC

Ion chromatography

ICPMS

Inductively coupled mass spectrometry

IMA

International mineralogical association

INAA

Instrumental neutron activation analysis

IRMS

Isotope ratio mass spectrometry

LA-ICP-IDMS

Laser ablation inductively coupled plasma isotope dilution mass spectrometry

LA-ICPMS

Laser ablation inductively coupled mass spectrometry

LCC

Lower continental crust

MORB

Mid-ocean ridge basalt

NAA

Instrumental neutron activation

NG-MS

Noble gas mass spectrometry

PAA

Photon activation analysis

PGA

Prompt gamma-ray analysis

PIXE

Proton induced X-ray emission

RNAA

Radiochemical neutron activation analysis

RPAA

Radiochemical photon activation analysis

SE

Ion-selective electrode

SIMS

Secondary ion mass spectrometry

STP

Standard temperature and pressure

TIMS

Thermal ionization mass spectrometry

TOF

Time-of-flight

TXRF

Total reflection X-ray fluorescence analysis

UCC

Upper continental crust

UHP/UHT

Ultra high pressure/Ultra high temperature

XRF

X-ray fluorescence

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanley, J.J., Koga, K.T. (2018). Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_2

Download citation

Publish with us

Policies and ethics