Skip to main content

Halogens in Hydrothermal Fluids and Their Role in the Formation and Evolution of Hydrothermal Mineral Systems

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

Halogens (and associated volatiles) in hydrothermal solutions are key elements responsible for the genesis of mineral systems. Chlorine is probably the most common halogen, responsible for complexing metals and transporting them in hydrothermal solutions. The F halogen can be extremely powerful for the transport of metals in some specific mineral systems (e.g., IOCG, carbonatites), in addition to forming their own mineral species, such as fluorites. In this chapter halogen complexes and ligands in hydrothermal solutions are briefly discussed. For the case in point, Cl ligands are considered with regard to their function in the extraction and precipitation of metals and related ores. The progress of halogens during the differentiation of granitic magmas and their role in the development of granitoid-related mineral systems are discussed. The exsolution and near surface venting of halogens in hot springs, geysers, and volcanic complexes in general are treated and examples provided. The function of F in greisen-type mineralisation is discussed, followed by specific examples on fluorite associated with continental porphyry deposits in eastern China and the giant Vergenoeg Fe and fluorite deposit in South Africa. Indeed, fluorite is the one halogen-bearing mineral phase that is abundantly precipitated from hydrothermal fluids, and which commonly constitutes an economically viable ore. Halogens in hydrothermal fluids associated with the formation of skarn deposits are also discussed. Finally, we look at the presence and very important role of halogens in evaporite sequences and their impact in the creation of continental hydrothermal deposits. It is important to note that evaporite sequences may have an active or passive role in supplying halogens to ore-making hydrothermal fluids. The former is exemplified by the sabkah evaporites, which form by direct interaction of basinal fluids with seawater leading to the formation of Copperbelt-type mineral systems. Whereas in the latter case, fluids passively leach and transport halogen-based complexing agents for the epigenetic precipitation of ores. Halogens responsible for the uptake and transport of metals in MVT (Mississippi Valley-type deposits), SEDEX (sedimentary exhalative deposits), IOCG (iron oxide-copper-gold deposits), and orogenic mineral systems conclude this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agangi A, Kamenetsky VS, McPhie J (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range Volcanics, South Australia. Chem Geol 273:314–325

    Article  Google Scholar 

  • Agangi A, Kamenetsky VS, McPhie J (2012) Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large igneous province, South Australia. Precambr Res 208–211:124–144

    Article  Google Scholar 

  • Agangi A, Kamenetsky VS, Hofmann A, Przybyłowicz W, Vladykin NV (2014) Crystallization of magmatic topaz and implications for Nb-Ta-W mineralization in F-rich silicic melts—the Ary-Bulak ongonite massif. Lithos 202–203:317–330

    Article  Google Scholar 

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18

    Article  Google Scholar 

  • Altigani MAH, Merkel RKW, Dixon RD (2016) Geochemical identification of episodes of gold mineralization in the Barberton Greenstone Belt, South Africa. Ore Geol Rev 75:186–205

    Article  Google Scholar 

  • Bailey DK (1978) Mantle metasomatism, continuing chemical changes within the Earth. Nature 296:525–530

    Article  Google Scholar 

  • Bailey DK (1987) Mantle metasomatism—perspective and prospect. Geol Soc Lond, Spec Publ 30:1–14

    Google Scholar 

  • Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. Geochem Soc Mineral Soc Am, Rev Mineral 47:539–614

    Article  Google Scholar 

  • Barnes HL (1979) Solubilities of ore minerals. Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 404–410

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide-(Cu-Au) systems: implications for hydrothermal alteration and metals. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp 43–60

    Google Scholar 

  • Best MG (1982) Igneous and metamorphic petrology. WH Freeman, New York

    Google Scholar 

  • Bodnar R, Cline J (2010) A group of papers on fluid inclusion research applied to ore deposits: an introduction. Econ Geol 105:325–327

    Google Scholar 

  • Borrok DM, Kesler SE, Boer RH, Essene EJ (1998) The Vergenoeg magnetite-fluorite deposit, South Africa: support for a hydrothermal model for massive iron oxide deposits. Econ Geol 93:564–586

    Article  Google Scholar 

  • Botcharnikov RE, Shmulovich KI, Tkachenko SI, Korzhinsky MA, Rybin AV (2003) Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcanoc, Kuriles. J Volcanol Geotherm Res 124:45–66

    Article  Google Scholar 

  • Bradley DC, Leach DL (2003) Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Mineral Deposita 38:652–667

    Article  Google Scholar 

  • Brantley SL, Ágútsdóttir AM, Rowe GL (1993) Crater lakes reveal volcanic heat and volatile fluxes. GSA Today 3(7):1, 176–177

    Google Scholar 

  • Brehler B, Fuge R (1978) Chlorine. In: Wedepohl KH, Correns CW, Shaw DM, Turekian KK, Zemann J (eds) Handbook of geochemistry, vol II-2. Springer, Berlin pp 17-A-1–17-O-1

    Google Scholar 

  • Brimhall GH, Crerar DA (1987) Ore fluids: magmatic to supergene. In: Carmichael ISE, Eugster HP (eds) Thermodynamics and modelling of geological materials: minerals; fluids and melts. Reviews in mineralogy, vol 17. Mineralogical Society of America, Washington, DC, pp 235–321

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Burt DM (1981) Acidity-salinity diagrams—application to greisen and porphyry deposits. Econ Geol 76:832–843

    Article  Google Scholar 

  • Cai MH, Mao JW, Ting L, Pirajno F, Huilian H (2007) The origin of the Tongken-Changpo tin deposit, Dachang metal district, Guanxi, China: clues from fluid inclusions and He isotope systematics. Mineral Deposita 42:613–626

    Article  Google Scholar 

  • Chen YJ, Ni P, Fan HR, Pirajno F, Lay Y, Su WC, Zhang H (2007) Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol Sinica 23(8):2085–2108 (in Chinese with English Abstract)

    Google Scholar 

  • Chen YJ, Zhai MG, Jiang SY (2009a) Significant achievements and open issues in the study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrol Sinica 25:2695–2726

    Google Scholar 

  • Chen YJ, Pirajno F, Li N, Guo DS, Lai Y (2009b) Isotope systematics and fluid inclusion studies of the Qiyugou breccia pipe-hosted gold deposit, Qinling orogeny, Henan Province, China: implications for ore genesis. Ore Geol Rev 35:245–261

    Article  Google Scholar 

  • Cheng Y, Mao JW, Chang ZS, Pirajno F (2013) The origin of the world class tin-polymetallic deposits in the Gejiu district, SW China: constraints from metal zoning characteristics and 40Ar-39Ar geochronology. Ore Geol Rev 53:50–62

    Article  Google Scholar 

  • Cole DR, Drummond SE (1986) The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: a preliminary assessment and possible implications for the formation of epithermal precious metal ore deposits. J Geochem Expl 25:45–79

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200

    Google Scholar 

  • Crerar DA, Wood S, Brantley S, Bocarsly A (1985) Chemical controls on solubility of ore forming minerals in hydrothermal solutions. Can Mineral 23:333–351

    Google Scholar 

  • Crocetti CA, Holland HD (1989) Sulphur-lead isotope systematics and the composition of fluid inclusions in galena from the ViburnumTrend, Missouri. Econ Geol 84:2196–2216

    Article  Google Scholar 

  • Crocker IT (1985) Volcanogenic fluorite-hematite deposits and associated pyroclastic rock suite at Vergenoeg, Bushveld Complex. Econ Geol 80:1181–1200

    Article  Google Scholar 

  • Davidson P, Kamenetsky VS (2001) Immiscibility and continuous felsic melt-fluid evolution within the Rio Blanco porphyry system, Chile: evidence from inclusions in magmatic quartz. Econ Geol 96:1921–1929

    Article  Google Scholar 

  • Davies BM (1998) Proterozoic zoned tungsten-bearing skarns and associated intrusives of the northwest Gascoyne Complex, Western Australia. Geol Sur West Aus Rpt 53

    Google Scholar 

  • Doherty AL, Webster JD, Goldoff BA, Piccoli PM (2014) Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850–950 ℃. Chem Geol 384:94–111

    Article  Google Scholar 

  • Dolejs D, Zajacz Z (2018) Halogens in silicic magmas and their hydrothermal systems. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 431–543

    Google Scholar 

  • Eadington PJ (1983) A fluid inclusion investigation of ore formation in a tin-mineralized granite, New England, New South Wales. Econ Geol 78:1204–1221

    Article  Google Scholar 

  • Eisenlhor BN, Tompkins LA, Cathles LM, Barley ME, Groves DI (1994) Mississippi Valley-type deposits: products of brine expulsion by eustatically induced hydrocarbon generation? An example from northwestern Australia. Geology 22:315–318

    Article  Google Scholar 

  • Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic Press, New York, 392pp

    Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge Univ Press, Cambridge, p 653

    Book  Google Scholar 

  • Eugster HP (1984) Granites and hydrothermal ore deposits: a geochemical framework. Mineral Mag 49:7–23

    Article  Google Scholar 

  • Eugster HP (1986) Lake Magadi Kenya: a model for rift valley hydrochemistry and sedimentation? Geol Soc Lond Spec Publ 25:177–190

    Article  Google Scholar 

  • Ferry JM (1994) A historical review of metamorphic fluid flow. J Geophys Res 99:15487–15498

    Article  Google Scholar 

  • Foster RP (1977) Solubility of scheelite in hydrothermal chloride solutions. Chem Geol 20:27–43

    Article  Google Scholar 

  • Foster RP, Mann AG, Armin T, Burmeister B (1978) Richardson’s Kop wolframite deposit: a geochemical model for the behavior of tungsten. In: Verwoerd WJ (ed) Mineralization in metamorphic terranes. Van Schaik, Pretoria, pp 107–128

    Google Scholar 

  • Fourie PJ (2000) The Vergenoeg fayalite iron oxide fluorite deposit, South Africa: some new aspects. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp 309–320

    Google Scholar 

  • Fournier RO, Christainsen RL, Hutchinson RA, Pierce KL (1994) A field-trip guide to the Yellowstone National Park, Wyoming, Montana and Idaho – volcanic, hydrothermal and glacial activity in the region. U.S. Geol Surv Bull 2099

    Google Scholar 

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Earth’s crust. Elsevier, Amsterdam

    Google Scholar 

  • Garven G, Raffensperger JP (1997) Hydrogeology and geochemistry of ore genesis in sedimentary basins. In: Barnes HL (ed) Geochemistry of ore deposits, 3rd edn. Wiley, New York, pp 125–189

    Google Scholar 

  • Goff BH, Weinberg R, Groves DI, Vielreicher NM, Fourie PJ (2004) The giant Vergenoeg fluorite deposit in a magnetite-fluorite-fayalite REE pipe: a hydrothermally altered carbonatite-related pegmatoid? Mineral Petrol 80:173–199

    Article  Google Scholar 

  • Graupner T, Mühlbach C, Schwarz-Schampera U, Henjes-Kunst F, Melcher F, Terblanche H (2015) Mineralogy of high-field-strength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa. Ore Geol Rev 64:583–601

    Article  Google Scholar 

  • Guest J, Cole P, Duncan A, Chester D (eds) (2003) Volcanoes of Southern Italy. The Geological Society, London, p 284

    Google Scholar 

  • Han YG, Zhang SH, Pirajno F, Zhou XW, Zhao GC, Qü WJ, Liu SH, Zhang JM, Liang HB, Yang K (2013) U-Pb and Re–Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: insights into the oxidation state of granitoids and Mo (Au) mineralization. Ore Geol Rev 55:29–47

    Article  Google Scholar 

  • Hearn PP, Sutter JF, Belkin HE (1987) Evidence for Late-Palaeozoic brine migration in Cambrian carbonate rocks of the central and southern Apalachians: implications for Mississippi Valley-type sulfide mineralization. Geochim Cosmochim Acta 51:1323–1334

    Article  Google Scholar 

  • Hedenquist JW, Henley RW (1985) Hydrothermal eruptions in the Waiotapu geothermal system, New Zealand: origin, breccia deposits and effect on precious metal mineralization. Econ Geol 80:1640–1666

    Article  Google Scholar 

  • Hedenquist JW, Arribas A, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philipines. Econ Geol 93:373–404

    Article  Google Scholar 

  • Hedenquist JW, Arribas A, Gonzalez-Urien E (2000) Exploration for epithermal gold deposits. Soc Econ Geol Rev 13:245–277

    Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  • Hill M, Barker F, Hunter D, Knight R (1996) Geochemical characteristics and origin of the Lebowa Granite Suite, Bushveld Complex. Int Geol Rev 38(3):195–227

    Article  Google Scholar 

  • Hockstein MP, Browne PRL (2000) Surface manifestations of geothermal systems with volcanic heat sources. In: Sigurdson H (Chief Ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 835–855

    Google Scholar 

  • Hurwitz S, Christiansen LB, Hsieh PA (2007) Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulations. J Geophys Res 112:B02206, p 16. https://doi.org/10.1029/2006JB004689

  • Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4:171–200

    Article  Google Scholar 

  • Jowett EC (1986) Genesis of Kuperfschiefer during Cu-Ag deposits by convective flow of rotliengendes brines during Triassic rifting. Econ Geol 81:1823–1837

    Article  Google Scholar 

  • Kamenetsky VS, Naumov VB, Davidson P, van Achterbergh E, Ryan CG (2004) Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia). Chem Geol 210:73–90

    Article  Google Scholar 

  • Kendrick MA, Burgess RAD, Pattrick SD, Turner G (2001) Fluid inclusion noble gas and halogen evidence on the origin of Cu- porphyry mineralising fluids. Geochim Cosmochim Acta 65(16):2651–2668

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Leach D, Pattrick RAD (2002a) Hydrothermal origins in Mississippi Valley-type ore districts: combined noble gas (He, Ar, Kr) and halogens (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky fluorspar distrit, Viburnum Trend, and Tr-State Districts, Midcontinent United States. Econ Geol 97:453–469

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2002b) Hydrothermal fluid origins in a fluorite-rich MississippiValley-type district: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analyses of fluid inclusions from the South Pennine ore field, United Kingdom. Econ Geol 97(3):435–451

    Article  Google Scholar 

  • Kendrick MA, Duncan R, Phillips D (2006) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa, Australia. Chem Geol 235:325–351

    Article  Google Scholar 

  • Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008) Noble gas and halogen constraints on regionally extensive mid-crustalNa-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambr Res 163:131–150

    Article  Google Scholar 

  • Kendrick MA, Phillips D, Wallace M, Miller JMcL (2011) Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: a case study from the Lennard Shelf, Australia. App Geochem 26:2089–2100

    Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and aplogranite-H2O-O-HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Krauskopf KB (1979) Introduction to geochemistry, 2nd edn. McGraw-Hill Kogakushu New York, p 617

    Google Scholar 

  • Laznicka P (2010) Giant metallic deposits; future sources of industrial metals, 2nd edn. Springer, Berlin, pp 960

    Google Scholar 

  • Leach DL, Plumlee GS, Hofstra AH, Landis GP, Rowan EL, Viets JG (1991) Origin of late dolomite cement by CO2-saturated deep basin brines: evidence from the Ozark region, central United States. Geology 19:348–351

    Article  Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. Econ Geol 100:561–608

    Google Scholar 

  • Lecumberri-Sanchez P, Bodnar R (2018) Halogen geochemistry of ore deposits: contributions towards understanding sources and processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 261–305

    Google Scholar 

  • Li N, Ulrich T, Chen YJ, Thomsen TB, Pease V, Pirajno F (2012) Fluid evolution of the Yuchinling porphyry Mo deposit, East Qinling, China. Ore Geol Rev 48:442–459

    Article  Google Scholar 

  • Li N, Chen YJ, Pirajno F, Ni ZY (2013) Timing of the Yuchiling giant porphyry Mo system, and implications for ore genesis. Mineral Deposita 48:505–524

    Article  Google Scholar 

  • Li MG, Yan F, Wang ZR, Liu XM, Fang XM, Li J (2015a) The origins of the Mengye potash deposits in the Lanping-Simao Basin, Yunnan Province, Western China. Ore Geol Rev 69:174–186

    Article  Google Scholar 

  • Li W, Audédat A, Zhang J (2015b) The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: evidence from LA-ICP-MS analysis of fluid inclusions. Ore Geol Rev 67:264–278

    Article  Google Scholar 

  • Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites, genesis and evolution. Unwin Hyman, London, pp 149–172

    Google Scholar 

  • Martini JEJ, Hammerback ECI (1998) Fluorspar. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa. Council Geoscience Handbook 16, pp 269–279

    Google Scholar 

  • Masterton WL, Slowinski EJ, Stanitski CL (1981) Chemical principles, Holt-Saunders, 5th edn. Saunders, Philadelphia, p 641

    Google Scholar 

  • McKibben MA, Hardie LA (1997) Ore-forming brines in active continental rifts. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 877–935

    Google Scholar 

  • McPhie J, Kamenetsky VS, Allen S, Ehrig K, Agangi A, Bath A (2011a) The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology 39(11):1003–1006

    Article  Google Scholar 

  • McPhie J, Kamenetsky VS, Chambefort I, Ehrig K, Green N (2011b) Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: was a sedimentary basin involved? Geology 39(8):795–798

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100(4): 299–336

    Google Scholar 

  • Mi J-X, Pan Y (2018) Halogen-rich minerals: crystal chemistry and geological significances. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 123–184

    Google Scholar 

  • Migdisov AA, William-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineral Deposita 49:987–997

    Article  Google Scholar 

  • Oliver J (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geological phenomena. Geology 14:99–102

    Article  Google Scholar 

  • Oliver NHS, Rubenach MJ, Valenta RK (1998) Precambrian metamorphism, fluid flow and metallogeny of Australia. AGSO J Geol Geophys 17:31–53

    Google Scholar 

  • Paterson DJ, Ohmoto H, Solomon M (1981) Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, western Tasmania. Econ Geol 76:393–438

    Article  Google Scholar 

  • Philips GN, Williams PJ, De Jong G (1994) The nature of metamorphic fluids and significance for metal exploration. Geol Soc Lond, Spec Publ 78:55–68

    Article  Google Scholar 

  • Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1kbar vapour pressure. Contrib Mineral Petrol 76:430–439

    Article  Google Scholar 

  • Pichavant M, Manning D (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys Earth Planet Int 35:31–50

    Article  Google Scholar 

  • Pirajno F (1992) Hydrothermal mineral deposits—principles and fundamental concepts for the exploration geologist. Springer, Berlin, p 708

    Google Scholar 

  • Pirajno F (2004) Metallogeny in the Capricorn Orogen, Western Australia, the result of multiple ore-forming processes. Precambr Res 128:411–440

    Article  Google Scholar 

  • Pirajno F (2007) Mantle plumes, associated intraplate tectono-magmatic processes and ore systems. Episodes 30:6–19

    Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, p 1250

    Google Scholar 

  • Pirajno F (2013a) Effects of metasomatism on mineral systems and their host rocks: alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites. In: Harlov DE, Austrheim H (eds) Metasomatism and metamorphism: the role of fluids in crustal and upper mantle processes, lecture series in earth science. Springer, Berlin, pp 203–252

    Google Scholar 

  • Pirajno F (2013b) The geology and tectonic settings of China’s mineral deposits. Springer, Dordrecht

    Book  Google Scholar 

  • Pirajno F (2015) Intracontinental anarogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res 27:1181–1216. https://doi.org/10.1016/j.gr.2014.09.008

  • Pirajno F, Bentley PN (1985) Greisen-related scheelite, gold and sulphide mineralisation at Kirwans Hill and Bateman Creek, Reefton District, New Zealand. NZ J Geol Geop 28:97–109

    Article  Google Scholar 

  • Pirajno F, Hoatson DM (2012) A review of Australia’s large igneous provinces and associated mineral systems: implications for mantle dynamics through geological time. Ore Gel Rev 48:2–54

    Article  Google Scholar 

  • Pirajno F, Jacob RE (1987) Sn-W metallogeny in the Damara Orogen, South West Africa/Namibia. S Afr J Geol 90:239–235

    Google Scholar 

  • Pirajno F, Joubert BD (1993) An overview of carbonate-hosted mineral deposits in the Otavi Mountain Land, Namibia: implications for ore genesis. J Afr Earth Sci 16(3):265–272

    Article  Google Scholar 

  • Pirajno F, Zhou TF (2015) Intracontinental porphyry and porphyry-skarn mineral systems in eastern China: scrutiny of a special case “made-in-China”. Econ Geol 110:603–629

    Article  Google Scholar 

  • Pirajno F, Thomassen B, Dawes PR (2003) Copper-gold occurrences in the Palaeproteroic Inglefield mobile belt, northwest Greenland: a new mineralisation style? Ore Geol Rev 22:225–249

    Article  Google Scholar 

  • Plimer IR (1985) Broken Hill Pb-Zn-Ag deposit: a product of mantle metasomatism. Mineral Deposita 20:147–153

    Article  Google Scholar 

  • Plimer IR (1986) Sediment-hosted exhalative Pb-Zn deposits: products of contrasting ensialic rifting. Trans Geol Soc S Afr 89:57–73

    Google Scholar 

  • Pollard PJ (1983) Magmatic and postmagmatic processes in the formation of rocks associated with rare element deposits. Trans Inst Min Metall 92:B1–B9

    Google Scholar 

  • Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Mineral Deposita 22:315–321

    Article  Google Scholar 

  • Renaut RW, Jones B (1997) Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bogoria, Kenya. Can J Earth Sci 34:801–818

    Article  Google Scholar 

  • Renaut RW, Tiercelin JJ, Owen RB (1986) Mineral precipitation and diagenesis in the sediments of Lake Bogoria basin, Kenya rift valley. Geol Soc Lond Spec Publ 25:159–176

    Article  Google Scholar 

  • Renaut RW, Jones B, Tiercelin JJ, Tarits C (2002) Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley. Sed Geol 148:235–257

    Article  Google Scholar 

  • Renfro AR (1974) Genesis of evaporite-associated stratiform metalliferous deposits—a sabkha process. Econ Geol 15:362–366

    Google Scholar 

  • Rickard D, Luther GW (2006) Metal sulfide complexes and clusters. Rev Mineral Geochem 61:421–504

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Reviews in mineralogy. Mineralogical Society of America 12:644

    Google Scholar 

  • Roedder E, Bodnar RJ (1997) Fluid inclusion studies of hydrothermal ore deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 657–697

    Google Scholar 

  • Salvi S, William-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60(11):1917–1932

    Article  Google Scholar 

  • Saunders JA, Swann CT (1990) Trace-metal content of Mississippi oil field brines. J Geochem Explor 37:171–183

    Article  Google Scholar 

  • Scandone R, Lisetti G, Fattori Speranza F (2006) The volcanological history of the volcanoes of Naples: a review. In: de Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Schminke H-U (2004) Volcanism. Springer, Berlin, p 324

    Book  Google Scholar 

  • Shepherd T, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Chapman & Hall, New York, p 239

    Google Scholar 

  • Sherlock RL (2005) The relationship between the McLaughlin gold-mercury deposit and active hydrothermal systems in the Geysers-Clear Lake area, northern Coast Ranges, California. Ore Geol Rev 26:349–382

    Article  Google Scholar 

  • Sherlock RL, Tosdal RM, Lehman NJ, Graney JR, Losh S, Jowett EC, Kesler SE (1995) Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion and isotopic evidence. Econ Geol 90:2156–2181

    Article  Google Scholar 

  • Sibson RH (2001) Seismogenic framework for hydrothermal transport and ore deposition. Rev Econ Geol 14:25–50

    Google Scholar 

  • Sibson RH, Moore JM, Rankin AH (1975) Seismic pumping: a hydrothermal fluid flow transport mechanism. J Geol Soc London 131:653–659

    Article  Google Scholar 

  • Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) (2000) Encyclopedia of volcanoes. Academic Press, New York, p 1417

    Google Scholar 

  • Sowerby JR, Keppler H (2002) The effect of fluorine, boron and excess sodium on the critical curve in the albite-H2O system. Contrib Mineral Petrol 143:32–37

    Article  Google Scholar 

  • Stoppa F, Pirajno F, Schiazza M, Vladykin NV (2016) An overview of Italian carbonatites as a strategic resource. Gondwana Res 37:152–171

    Article  Google Scholar 

  • Sverjensky DA (1986) Genesis of Mississipi valley-type lead-zinc deposits. Ann Rev Earth Planet Sci 14:177–199

    Article  Google Scholar 

  • Taran YA, Pilipenko VP, Am Rzhkov, Vakin EA (1992) A geochemical model for fumaroles of the Mutnovsky volcano, Kamchtaka, USSR. J Volcanol Geotherm Res 49:269–283

    Article  Google Scholar 

  • Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases from Kudriavy volcano, Iturup, Kuril Islands. Geochim Cosmochim Acta 59:1749–1761

    Article  Google Scholar 

  • Taran YA, Pokrovsky BG, Volynets ON (1997) Hydrogen isotopes in hornblendes and biotites from Quaternary volcanic rocks of the Kamchatka-Kurile arc. Geochem J 31:203–221

    Article  Google Scholar 

  • Teiber H, Marks MAW, Wenzel T, Siebel W, Altherr R, Markl G (2014) The distribution of halogens (F, Cl, Br) in granitoid rocks. Chem Geol 374–375:92–109

    Article  Google Scholar 

  • Thomas R, Förster H-J, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid inclusion study. Contrib Mineral Petrol 48:582–601

    Article  Google Scholar 

  • Van den Kerkhof A, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Article  Google Scholar 

  • Vigneresse JL (2009) Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with application to ore generation. Chem Geol 263:69–81

    Article  Google Scholar 

  • Warren JK (1999) Evaporites: their evolution and economics. Blackwell Scientific, Oxford, p 438

    Google Scholar 

  • Warren JK (2000) Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Aus J Earth Sci 47:179–208

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin, p 1036

    Book  Google Scholar 

  • Warren JK (2010) Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci Rev 98:217–268

    Article  Google Scholar 

  • Webster JD (1990) Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt—implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contrib Mineral Petrol 104:424–438

    Article  Google Scholar 

  • Webster JD (1997) Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochim Cosmochim Acta 61:1017–1029

    Article  Google Scholar 

  • Webster JD, Duffield WA (1994) Extreme halogen abundance in tin-rich magma of the Taylor Creek rhyolite, New Mexico. Econ Geol 89:840–850

    Article  Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid: felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581

    Article  Google Scholar 

  • Webster J, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430

    Google Scholar 

  • Westra G, Keith SB (1981) Classification and genesis of stockwork molybdenum deposits. Econ Geol 76:844–873

    Article  Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Article  Google Scholar 

  • William-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287

    Article  Google Scholar 

  • Wright JH, Kwak TAP (1989) Tin-bearing greisens of Mount Bischoff, northwestern Tasmania, Australia. Econ Geol 84:551–574

    Article  Google Scholar 

  • Yang YF, Li N, Chen YJ (2012) Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of porphyry ore-fluid systems fromed in a continent collision setting. Ore Geol Rev 46:83–94

    Article  Google Scholar 

  • Zellmer GF, Edmonds M, Straub SM (eds) (2015) The role of volatiles in the genesis, evolution and eruption of arc magmas. Geol Soc Lond Spec Publ 410

    Google Scholar 

  • Zhong R, Brugger J, Chen YJ, Li WB (2015) Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem Geol 395:154–164

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Dan Harlov for invitating me to write this contribution. I owe gratitude to Andrea Agangi and two anonymous reviewers for their detailed and insightful comments. These have led to a complete “reconstruction” of the chapter. My neighbour Murray Jones drafted most of the figures in record time; thank you Murray.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Pirajno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirajno, F. (2018). Halogens in Hydrothermal Fluids and Their Role in the Formation and Evolution of Hydrothermal Mineral Systems. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_12

Download citation

Publish with us

Policies and ethics