Skip to main content

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

This chapter reviews factors, which control the distribution of the two major halogens, F and Cl, in high-grade metamorphic rocks; their compositional correlations and partitioning between minerals; experimental data on stability and phase equilibria of the halogen-bearing minerals; the influence of halogens on Fe–Mg exchange reactions; and the means of estimating concentrations/activity of halogen species in the fluid phase (“chlorimetry and fluorimetry”) via calculation of equilibrium conditions for mineral assemblages containing halogen-bearing phases. Clear negative correlation between the F content and XFe = Fe/(Fe + Mg) suggests that natural biotite and amphibole obey the Fe–F avoidance rule. A strong positive correlation exists between K and Cl in amphibole. A scattering of points on the XFe–Cl and TiO2–Cl diagrams indicate the possible involvement of an exotic Cl-rich phase (fluid or melt) during the formation of Cl-bearing biotite and amphibole. Fluorine and Cl substituting for OH-groups substantially stabilize minerals relative to dehydration and melting. They should also strongly affect the partitioning of Fe and Mg between biotite, amphibole, and anhydrous minerals. This effect is quantified for Fe–Mg exchange reactions involving biotite (Zhu and Sverjensky 1992), but remains to be evaluated for amphibole. Calculations based on recent thermodynamic systematics show that a relatively Mg-rich, Cl-poor biotite (for example, XFe = 0.4 and about 0.2 wt.% Cl) may coexist with a fairly Cl-rich fluid, i.e. total Cl/(Cl + H2O) ranges from 0.1–0.3, depending on the assemblage, under granulite-facies P–T conditions. Alkali (and Ca) metasomatism, caused by interaction of high grade rocks with halogen-bearing fluids, may have a major impact on the subsolidus phase transformation and melting processes during high-grade metamorphism and anatexis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Antignano A, Manning CE (2008) Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900 °C and 0.7 to 2.0 GPa. Chem Geol 251:112–119

    Article  Google Scholar 

  • Aranovich LY (1983) Biotite–garnet equilibria in metapelites: I. Thermodynamics of solid solutions and end-member reactions. In: Zharikov VA (ed) Contributions to physico-chemical petrology, vol 11. Nauka, Moscow, pp 121–136 (in Russian)

    Google Scholar 

  • Aranovich LY (1991) Mineral equilibria of multicomponent solid solutions. Nauka, Moscow, 253 p (in Russian)

    Google Scholar 

  • Aranovich LY, Newton RC (1996) H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium. Contrib Mineral Petrol 125:200–212

    Article  Google Scholar 

  • Aranovich LY, Newton RC (1997) H2O activity in concentrated KCl and KCl–NaC1 solutions at high temperatures and pressures measured by the brucite-periclase equilibrium. Contrib Mineral Petrol 127:261–271

    Article  Google Scholar 

  • Aranovich LY, Newton RC, Manning CE (2013) Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth Planet Sci Lett 374:111–120

    Article  Google Scholar 

  • Aranovich LY, Makhluf AR, Manning CE et al (2014) Dehydration melting and the relationship between granites and granulites. Precambr Res 253:26–37

    Article  Google Scholar 

  • Azimov PY, Bushmin SA (2007) Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800 °C and 1–5 kbar. Geochem Int 45:1210–1234

    Article  Google Scholar 

  • Belyanin GA, Kramers JD, Vorster C et al (2014) The timing of successive fluid events in the Southern Marginal Zone of the Limpopo Complex, South Africa: constraints from 40Ar–39Ar geochronology. Precambr Res 254:169–193

    Article  Google Scholar 

  • Berman RG (2007) WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geological Survey of Canada Open File 5462

    Google Scholar 

  • Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2. Contrib Mineral Petrol 126:1–22

    Article  Google Scholar 

  • Berman RG, Aranovich LY, Rancourt P et al (2007) Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite. Am Mineral 92:139–150

    Article  Google Scholar 

  • Bohlen SR, Essene EJ (1978) The significance of metamorphic fluorite in the Adirondacks. Geochim Cosmochim Acta 42:1669–1678

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL, Wall VI et al (1983) Stability of phlogopite–quartz and sanidine–quartz: A model for melting in the lower crust. Contrib Mineral Petrol 83:270–277

    Article  Google Scholar 

  • Bose S, Das K, Fukuoka M (2005) Fluorine content of biotite in granulite-grade metapelitic assemblages and its implications for the Eastern Ghats granulites. Eur J Mineral 17:665–674

    Article  Google Scholar 

  • Carswell DA, Wilson RN, Zhai M (1996) Ultra-high pressure aluminous titanites in carbonate bearing eclogites at Shuanghe in Dabieshan, Central China. Mineral Mag 60:461–471

    Article  Google Scholar 

  • Castelli D, Rubatto D (2002) Stability of Al- and F-rich titanite in metacarbonate: petrologic and isotopic constraints from a polymetamorphic eclogitic marble of the internal Sesia Zone (Western Alps). Contrib Mineral Petrol 14:627–639

    Article  Google Scholar 

  • Chernosky JV, Berman RG, Jenkins DM (1998) The stability of tremolite: new experimental data and a thermodynamic assessment. Am Mineral 83:726–739

    Article  Google Scholar 

  • Chevychelov VY, Botcharnikov RE, Holtz F (2008) Experimental study of fluorine and chlorine contents in mica (biotite) and their partitioning between mica, phonolite melt, and fluid. Geochem Int 46:1081–1089

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Dachs E, Harlov D, Benisek A (2010) Excess heat capacity and entropy of mixing along the chlorapatite–fluorapatite binary join. Phys Chem Mineral 37:665–676

    Article  Google Scholar 

  • De Maesschalck AA, Touret JLR, Maaskant P, Dahanayake K (1991) Petrology and fluid inclusions in garnetiferous gneisses and charnockites from Weddagala (Ratnapura district, Sri Lanka). J Geol 99:443–456

    Article  Google Scholar 

  • Dolgov YA, Tomilenko AA, Chupin VP (1976) Inclusions of hydrosaline melts -brines in quartz from deep-seated granites and pegmatites. Doklady AN SSSR 226:938–941 (in Russian)

    Google Scholar 

  • Dooley DF, Patiño Douce AE (1996) Fluid-absent melting of F-rich phlogopite + rutile + quartz. Am Mineral 81:202–212

    Article  Google Scholar 

  • Ekström TK (1972) The distribution of fluorine among some coexisting minerals. Contrib Mineral Petrol 34:192–200

    Article  Google Scholar 

  • Ellis DE (1978) Stability and phase equilibria of chloride and carbonate bearing scapolites at 750 °C and 4000 bar. Geochim Cosmochim Acta 42:1271–1281

    Article  Google Scholar 

  • Enami M, Suzuki K, Liou JG et al (1993) Al–Fe3+ and F–OH substitutions in titanite and constraints on their P–T dependence. Eur J Mineral 5:219–231

    Article  Google Scholar 

  • Eugster HP, Protska HJ (1960) Synthetic scapolites. Geol Soc Am Bull 71:1859–1860

    Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93:46–55

    Article  Google Scholar 

  • Franz G, Spear FS (1985) Aluminous sphene (titanite) from the eclogite Zone, south-central Tauern window, Austria. Chem Geol 50:33–46

    Article  Google Scholar 

  • Gilbert MC, Helz RT, Popp RK, Spear FL (1982) Experimental studies of amphibole stability. In: Veblen DR, Ribbe PH (eds) Amphibole and other hydrous pyriboles, vol 9B. Mineralogical Society of America, Washington, DC, pp 229–353

    Google Scholar 

  • Gomez-Pugnaire MT, Franz G, Sanchez-Vizcaino VL (1994) Retrograde formation of NaCl-scapolite in high pressure metaevaporites from Cordilleras Beticas (Spain). Contrib Mineral Petrol 116:448–461

    Article  Google Scholar 

  • Graham CM, Navrotsky A (1986) Thermochemistry of the tremolite-edenite amphiboles using fluorine analogues, and applications to amphibole-plagioclase-quartz equilibria. Contrib Mineral Petrol 93:18–32

    Article  Google Scholar 

  • Graham JT, Yardley BWD (2002) The origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Article  Google Scholar 

  • Grew ES (1982) Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite facies. Am Mineral 67:762–787

    Google Scholar 

  • Grew ES, Yates MG, Barbier J et al (2000) Granulite-facies beryllium pegmatites in the Napier Complex in Khmara and Amundsen Bays, western Enderby Land, East Antarctica. Polar Geosci 13:1–40

    Google Scholar 

  • Hammerli J, Rubenach M (2018) The role of halogens during regional and contact metamorphism. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 649–712

    Google Scholar 

  • Hansen EC, Harlov DE (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680

    Article  Google Scholar 

  • Hansen EC, Newton RC, Janardhan AS et al (1995) Differentiation of late Archean crust in the Eastern Dharwar Craton, South India. J Geol 103:629–651

    Article  Google Scholar 

  • Harlov DE (2004) Fluid induced dehydration of mafic lower crust from amphibolite to granulite facies: nature and experiment. Am Geophys Union. Fall Meeting, V31A–1409

    Google Scholar 

  • Harlov DE, Förster H-J (2002) High-grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano Zone, northern Italy. Part I: Petrography and silicate mineral chemistry. J Petrol 43:769–799

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229

    Article  Google Scholar 

  • Harlov DE, Wirth R (2000) K-feldspar-quartz and K-feldspar-plagioclase phase boundary interactions in garnet-orthopyroxene gneisses from the Val Strona di Omegna, Ivrea Verbano Zone, northern Italy. Contrib Mineral Petrol 140:148–162

    Article  Google Scholar 

  • Harlov DE, Hansen EC, Bigler C (1998) Petrologic evidence for K-feldspar metasomatism in granulite facies rocks. Chem Geol 151:373–386

    Article  Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Johansson L, Van den Kerkhof A et al (2006) The role of advective fluid flow and diffusion during localized, solid-state dehydration: sondrum Stenhuggeriet, Halmstad, SW Sweden. J Petrol 47:3–33

    Article  Google Scholar 

  • Harlov DE, Van den Kerkhof A, Johansson L (2014) Localized, solid state dehydration associated with the Varberg charnockite intrusion, SW Sweden. Precambr Res 253:50–62

    Article  Google Scholar 

  • Hensen BJ, Osanai Y (1994) Experimental study of dehydration melting of F-bearing biotite in model pelitic compositions. Mineral Mag 58A:410–411

    Article  Google Scholar 

  • Higashino F, Kawakami T, Satish-Kumar M et al (2013) Chlorine-rich fluid or melt activity during granulite facies metamorphism in the Late Proterozoic to Cambrian continental collision zone—an example from the Sør Rondane Mountains, East Antarctica. Precambr Res 234:229–246

    Article  Google Scholar 

  • Holloway JR, Ford CE (1975) Fluid-absent melting of the fluoro-hydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci Lett 25:44–48

    Article  Google Scholar 

  • Hovis GL, Harlov DE (2010) Solution calorimetric investigation of fluor-chlorapatite crystalline solutions. Am Mineral 95:946–952

    Article  Google Scholar 

  • Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib Mineral Petrol 127:17–29

    Article  Google Scholar 

  • Iiyama JT (1965) Influence des anions sur les équilibres d’échange dions Na–K dans les feldspaths alcalins a 600 °C sous une pression de 1000 bars. Bull Soc Franc Minéral Cristallograph 88:618–622

    Google Scholar 

  • Jenkins DM, Clare AK (1990) Comparison of the high-temperature and high-pressure stability limits of synthetic and natural tremolite. Am Mineral 75:358–366

    Google Scholar 

  • Johannes W (1984) Beginning of melting in the granite system Qz–Or–Ab–An–H2O. Contrib Mineral Petrol 86:264–273

    Article  Google Scholar 

  • Kamineni DC, Bonardi M, Rao AT (1982) Halogen-bearing minerals from Airport Hill, Visakhapatnam, India. Am Mineral 67:1001–1004

    Google Scholar 

  • Kapustin YL (1987) The composition of apatite from metamorphic rocks. Geochem Int 24:45–51

    Google Scholar 

  • Khodorevskaya LI (2004) Granitization of amphibolites: 2. Characterization of physical and chemical phenomena related to fluid filtration through a rock. Petrology 12:282–296

    Google Scholar 

  • Khodorevskaya LI, Aranovich LY (2016) Experimental study of amphibole interaction with H2O-NaCl fluid at 900 °C, 500 MPa: toward granulite facies melting and mass transfer. Petrology 24(3):215–233

    Google Scholar 

  • Korzhinskii DS (1946) Principles of alkali mobility during magmatic phenomena. Proc dedicated to Acad. D.S. Belyankin, Izdatel’stvo AN SSSR (in Russian)

    Google Scholar 

  • Korzhinskii DS (1962) The role of alkalinity in the formation of charnockitic gneisses. trudy Vostochno-Sibirskogo Instituta Academii Nauk SSSR Series of Geology 5:50–61 (in Russian)

    Google Scholar 

  • Korzhinsky MA (1981) Apatite solid solutions as indicators of the fugacity of HCl and HF in hydrothermal fluids. Geochem Int 3:45–60

    Google Scholar 

  • Korikovskii SP, Aranovich LY (2015) Charnockitization of feldspar-free orthopyroxene–clinopyroxene-phlogopite meta-ultramafite in the Lapland Granulite Belt, Southern Kola Peninsula: compositional trends of rocks and minerals, P–T parameters, and fluid regime. Petrology 23:211–250

    Google Scholar 

  • Kullerud K (1995) Chlorine, titanium and barium-rich biotites: factors controlling biotite composition and the implications for garnet–biotite geothermometry. Contrib Mineral Petrol 120:42–59

    Article  Google Scholar 

  • Kullerud K (1996) Chlorine-rich amphiboles: interplay between amphibole composition and an evolving fluid. Eur J Mineral 8:355–370

    Article  Google Scholar 

  • Kullerud K, Erambert M (1999) Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid–mineral interaction in the deep crust. Geochim Cosmochim Acta 63:3829–3844

    Article  Google Scholar 

  • Kusebauch C, John T, Barnes JD et al (2015) Halogen element and stable chlorine isotope fractionation caused by fluid–rock interaction (Bamble Sector, SE Norway). J Petrol 56(2):299–324. https://doi.org/10.1093/petrology/egv001

    Google Scholar 

  • Labotka TC, Cole DR, Fayek M et al (2004) Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution. Am Mineral 89:1822–1825

    Article  Google Scholar 

  • Lamb WM, Valley JW (1988) Granulite facies amphibole and biotite equilibria, and calculated peak-metamorphic water activities. Contrib Mineral Petrol 100:349–360

    Article  Google Scholar 

  • Larikova TL, Zaraisky GP (2009) Experimental modeling of corona textures. J Metamorph Geol 27:139–151

    Article  Google Scholar 

  • Leelanandam C (1970) Chemical mineralogy of hornblendes and biotites from the charnockitic rocks of Kondapalli, India. J Petrol 11:475–505

    Article  Google Scholar 

  • Léger A, Rebbert C, Webster J (1996) Cl-rich biotite and amphibole from Black Rock Forest, Cornwall, New York. Am Mineral 81:495–504

    Article  Google Scholar 

  • Luddington S (1978) The biotite-apatite geothermometer revisited. Am Mineral 63:551–553

    Google Scholar 

  • Manning CE, Aranovich LY (2014) Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects. Precambr Res 253:6–16

    Article  Google Scholar 

  • Markl G, Bucher K (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391:781–783

    Article  Google Scholar 

  • Markl G, Piazolo S (1998) Halogen-bearing minerals in syenites and high-grade marbles of Dronning Maud Land, Antarctica: monitors of fluid compositional changes during late-magmatic fluid–rock interaction processes. Contrib Mineral Petrol 132:246–268

    Article  Google Scholar 

  • Markl G, Piazolo S (1999) Stability of high–Al titanite from low-pressure calc-silicates in light of fluid and host rock composition. Am Mineral 84:37–47

    Article  Google Scholar 

  • Markl G, Musashi M, Bucher K (1997) Chlorine stable isotope composition of granulites from Lofoten, Norway: implications for the Cl isotopic composition and for the source of Cl enrichment in the lower crust. Earth Planet Sci Lett 150:95–102

    Article  Google Scholar 

  • Markl G, Ferry J, Bucher K (1998) Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway. Am J Sci 298:705–757

    Article  Google Scholar 

  • Mora C, Valley JW (1989) Halogen-rich scapolite and biotite: implications for metamorphic fluid–rock interaction. Am Mineral 74:721–737

    Google Scholar 

  • Morrison J (1991) Compositional constraints on the incorporation of Cl into amphiboles. Am Mineral 76:1920–1930

    Google Scholar 

  • Motoyoshi Y, Hensen BJ (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. Am Mineral 86:1404–1413

    Article  Google Scholar 

  • Mouri H, Guiraud M, Hensen BJ (1996) Petrology of phlogopite-sapphirine-bearing Al-Mg granulites from Ihouhaouene, In Ouzzal, Hoggar, Algeria: an example of phlogopite stability at high temperature. J Metamorph Geol 14:725–738

    Article  Google Scholar 

  • Munoz JL (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. In: Bailey SW (ed) Micas. Reviews in Mineralogy, vol 13. Mineralogical Society of America, Washington, D.C., pp 469–493

    Google Scholar 

  • Munoz JL, Ludington SD (1977) Fluorine-hydroxyl exchange in synthetic muscovite and its application to muscovite-biotite assemblages. Am Mineral 62:304–308

    Google Scholar 

  • Munoz JL, Swenson A (1981) Chloride-hydroxyl exchange in biotite and estimation of relative HC1/HF activities in hydrothermal fluids. Econ Geol 76:2212–2221

    Article  Google Scholar 

  • Nair R, Chacko T (2002) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. J Petrol 43:2121–2142

    Article  Google Scholar 

  • Newton RC, Goldsmith JR (1976) Stability of the end-member scapolites: 3NaAlSi3O8·NaCl, 3CaAl2Si2O8·CaCO3, 3CaAl2Si2O8·CaSO4. Z Kristall 143:333–353

    Google Scholar 

  • Newton RC, Manning CA (2010) Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies. Geofluids 10:58–72

    Google Scholar 

  • Newton RC, Aranovich LY, Hansen EC et al (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precambr Res 91:41–63

    Article  Google Scholar 

  • Newton RC, Touret JRL, Aranovich LY (2014) Fluids and H2O activity at the onset of granulite facies metamorphism. Precambr Res 253:17–25

    Article  Google Scholar 

  • Nijland TG, Jansen JBH, Maijer C (1993) Halogen geochemistry of fluid during amphibolite–granulite metamorphism as indicated by apatite and hydrous silicates in basic rocks from the Bamble Sector, South Norway. Lithos 30:167–189

    Article  Google Scholar 

  • Oen IS, Lustenhouwer WJ (1992) Cl-rich biotite, Cl–K hornblende, and Cl-rich scapolite in metaexhalites: Nora, Bergslagen, Sweden. Econ Geol 87:1638–1648

    Article  Google Scholar 

  • Oliver NHS, Wall VJ, Cartwright I (1992) Internal control of fluid compositions in amphibolite-facies scapolitic calc-silicates, Mary Kathleen, Australia. Contrib Mineral Petrol 111:94–112

    Article  Google Scholar 

  • Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261:201–237

    Article  Google Scholar 

  • Orville PM (1972) Plagioclase cation exchange equilibria with aqueous chloride solution: results at 700 °C and 2000 bars in the presence of quartz. Am J Sci 272:234–272

    Article  Google Scholar 

  • Orville PM (1975) Stability of scapolite in the system Ab–An–NaCl–CaCO3 at 4 kbar and 750 °C. Geochim Cosmochim Acta 39:1091–1105

    Article  Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218

    Article  Google Scholar 

  • Perchuk LL, Aranovich LY (1984) Improvement of biotite-garnet thermometer: correction for fluorine content in biotite. Dokl Akad Nauk SSSR 277:131–135 (in Russian)

    Google Scholar 

  • Perchuk LL, Gerya TV (1992) The fluid regime of metamorphism and the charnockite reaction in granulites: a review. Int Geol Rev 34:1–58

    Article  Google Scholar 

  • Perchuk LL, Gerya TV (1993) Fluid control of charnockitization. Chem Geol 108:175–186

    Article  Google Scholar 

  • Perchuk LL, Aranovich LY, Podlesskii KK et al (1985) Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J Metam Geol 3:265–310

    Article  Google Scholar 

  • Perchuk LL, Gerya TV, Korsman K (1994) A model for charnockitization of gneissic complexes. Petrology 2:451–479

    Google Scholar 

  • Perchuk LL, Safonov OG, Gerya TV et al (2000) Mobility of components in metasomatic transformation and partial melting of gneisses: an example from Sri-Lanka. Contrib Mineral Petrol 140:212–232

    Article  Google Scholar 

  • Peterson JW, Chako T, Kuehner SM (1991) The effects of fluorine on the vapor-absent melting of phlogopite + quartz: implications for deep-crustal processes. Am Mineral 76:470–476

    Google Scholar 

  • Pichavant M, Montel J-M, Richard LR (1992) Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison-Watson model. Geochim Cosmochim Acta 56:3855–3861

    Article  Google Scholar 

  • Putnis A, Austrheim H (2013) Mechanism of metasomatism and metamorphism on the local mineral scale: the role of dissolution-precipitation during mineral re-equilibration. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. The role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 141–170

    Google Scholar 

  • Rajesh HM, Belyanin GA, Safonov OG et al (2013) Fluid-induced dehydration of the paleoarchean Sand River biotite-hornblende gneiss, Central Zone, Limpopo Complex, South Africa. J Petrol 54:41–74

    Article  Google Scholar 

  • Rajesh HM, Safonov OG, Belyanin GA et al (2014) Monazite-fluorapatite characteristics as evidence for interplay between ~2.04 Ga fluid-induced dehydration and melting of the Sand River gneiss, Limpopo Complex, South Africa. S Afr J Geol 117:237–254

    Article  Google Scholar 

  • Rosenberg PE, Foit FF Jr (1977) Fe2+-F avoidance in silicates. Geochim Cosmochim Acta 41:345–346

    Google Scholar 

  • Safonov OG (1998) The role of alkalis in the formation of coronitic textures in metamangerites and meta-anorthosites from the Adirondack Complex, United States. Petrology 6:583–602

    Google Scholar 

  • Safonov OG, Aranovich LY (2014) Alkali control of high-grade metamorphism and granitization. Geosci Front 5:711–727

    Article  Google Scholar 

  • Safonov OG, Butvina VG (2013) Interaction of model peridotite with the H2O–KCl fluid: experiment at pressure 1.9 GPa and its application to the upper mantle metasomatism. Petrology 21:599–615

    Article  Google Scholar 

  • Safonov OG, Kovaleva EI, Kosova SA et al (2012) Experimental and petrological constraints on local-scale interaction of biotite–amphibole gneiss with H2O–CO2–(K, Na)Cl fluids at middle-crustal conditions: example from the Limpopo Complex, South Africa. Geosci Front 3:829–841

    Article  Google Scholar 

  • Safonov OG, Tatarinova DS, van Reenen DD et al (2014a) Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the Petronella shear-zone, Limpopo Complex, South Africa. Precambr Res 253:114–145

    Article  Google Scholar 

  • Safonov OG, Kosova SA, van Reenen DD (2014b) Interaction of biotite-amphibole gneiss with the H2O–CO2–(K, Na)Cl fluids at 550 MPa and 750 and 800 °C: experimental study and applications to dehydration and partial melting in the middle crust. J Petrol 55:2419–2456

    Article  Google Scholar 

  • Sajeev K, Osanai Y, Kon Y et al (2009) Stability of pargasite during ultrahigh-temperature metamorphism: a consequence of titanium and REE partitioning? Am Mineral 94:535–545

    Article  Google Scholar 

  • Sallet R (2000) Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F–OH biotite–apatite thermometer grid. Lithos 50:241–253

    Article  Google Scholar 

  • Satish-Kumar M, Hermann J, Tsunogae T et al (2006) Carbonation of Cl-rich scapolite boudins in Skallen, East Antarctica: evidence for changing fluid condition in the continental crust. J Metam Geol 24:241–261

    Article  Google Scholar 

  • Schettler G, Gottschalk M, Harlov DE (2011) A new semi-micro wet chemical method for apatite analysis and its application to the crystal chemistry of fluorapatite–chlorapatite solid solutions. Am Mineral 96:138–152

    Article  Google Scholar 

  • Sengupta P, Raith MM, Datta A (2004) Stability of fluorite and titanite in a calc-silicate rock from the Vizianagaram area, Eastern Ghats Belt, India. J Metamorph Geol 22:345–359

    Article  Google Scholar 

  • Sharma RS (1981) Mineralogy of scapolite-bearing rocks from Rajasthan, northwest peninsular India. Lithos 14:165–172

    Article  Google Scholar 

  • Sharova OI, Chudnenko KV, Avchenko AV et al (2012) Aluminum–fluorine sphene (titanite) as an indicator of fluorine fluid. Dokl Earth Sci 442:126–129

    Article  Google Scholar 

  • Shaw RK, Venkatesh TL, Gupta AK (1993) Experimental study of the system fluorapatite–chlorapatite under 10 and 12 kbar at 640, 750 and 900 °C. Nat Acad Sci Lett 16:27–35

    Google Scholar 

  • Shell HR, Ivey KH (1969) Fluorine micas. US Bur Min Bull 647:291

    Google Scholar 

  • Shmulovich KI, Graham CM (1996) Melting of albite and dehydration of brucite in H2O–NaCl fluids to 9 kbars and 700–900 °C: implications for partial melting and water activities during high pressure metamorphism. Contrib Mineral Petrol 124:370–382

    Article  Google Scholar 

  • Shmulovich KI, Graham CM (2008) Plagioclase–aqueous solution equilibrium: concentration dependence. Petrology 16:177–192

    Article  Google Scholar 

  • Skjerlie KP, Johnston AD (1993) Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites. J Petrol 34:785–815

    Article  Google Scholar 

  • Smith DC (1981) The pressure and temperature dependence of Al-solubility in titanite in the system Ti–Al–Ca–Si–O–F. Progress Experiment Petrol Series D 18:193–197

    Google Scholar 

  • Smith MP, Yardley BWD (1999) Fluid evolution during metamorphism of the Otago Schist, New Zealand; (II), Influence of detrital apatite on fluid salinity. J Metam Geol 17:187–193

    Article  Google Scholar 

  • Sobolev NV, Shatsky VS (1991) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–746

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. Rev Mineral Geochem 48:293–335

    Article  Google Scholar 

  • Stormer JC, Carmichael SE (1971) Fluorine-hydroxyl exchange in apatite and biotite: a potential igneous geothermometer. Contrib Mineral Petrol 31:121–131

    Article  Google Scholar 

  • Suwa K, Enami M, Horiuchi T (1987) Chlorine-rich potassium hastingsite from West Ongul Island, Lützow-Holm Bay, East Antarctica. Mineral Mag 51:709–714

    Article  Google Scholar 

  • Tareen JAK, Keshava Prasad AV, Basavalingu B et al (1995) The effect of fluorine and titanium on the vapor-absent melting of phlogopite and quartz. Mineral Mag 59:566–570

    Article  Google Scholar 

  • Tareen JAK, Keshava Prasad AV, Basavalingu B et al (1998) Stability of F–Ti-phlogopite in the system phlogopite-sillimanite-quartz: an experimental study of dehydration melting in H2O-saturated and under saturated conditions. Mineral Mag 62:373–380

    Article  Google Scholar 

  • Tõnsuaadu K, Gross KA, Pluduma L, Viederma M (2012) A review on the thermal stability of calcium apatites. J Therm Anal Calorim 110:647–659

    Article  Google Scholar 

  • Touret JRL (1995) Brines in granulites: the other fluid (abstract). ECROFI (European Conference on Fluid Inclusions), Barcelona, June 1995

    Google Scholar 

  • Touret JLR, Huizenga J-M (2011) Fluids in granulites. Geol Soc Am Memoirs 207:25–37

    Article  Google Scholar 

  • Touret JLR, Nijland TG (2013) Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. The role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 415–469

    Chapter  Google Scholar 

  • Troitzsch U, Ellis DJ (2002) Thermodynamic properties and stability of AlF-bearing titanite CaTiSiO5-CaAlFSiO4. Contrib Mineral Petrol 142:543–563

    Article  Google Scholar 

  • Troll G, Gilbert MC (1974) Stability of fluorine tremolite. Trans Am Geophys Union 155:481

    Google Scholar 

  • Trommsdorff V, Skippen G (1986) Vapor loss (“boiling”) as a mechanism for fluid evolution in metamorphic rocks. Contrib Mineral Petrol 94:317–322

    Article  Google Scholar 

  • Trommsdorff V, Skippen G, Ulmer P (1985) Halite and sylvite solid inclusions in high-grade rocks. Contrib Mineral Petrol 89:24–29

    Google Scholar 

  • Tropper P, Manning CE, Essene EJ (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. J Petrol 43:1787–1814

    Article  Google Scholar 

  • Tsunogae T, Osanai Y, Owada M et al (2003) High fluorine pargasites in ultrahigh temperature granulites from Tonagh Island in the Archean Napier Complex, East Antarctica. Lithos 70:21–38

    Article  Google Scholar 

  • Valley JW, Petersen EU, Essen EJ, Bowman JR (1982) Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C–Q–H–F fluid compositions. Am Mineral 67:545–557

    Google Scholar 

  • Valley JW, Bohlen SR, Essene EJ et al (1990) Metamorphism in the Adirondacks: II The role of fluids. J Petrol 31:555–596

    Article  Google Scholar 

  • Vanko DA, Bishop FC (1982) Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, N.W. Nevada. Contrib Mineral Petrol 81:277–289

    Article  Google Scholar 

  • Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite-quartz: experiments and models. Am Mineral 77:1206–1222

    Google Scholar 

  • Volfinger M, Robert J-L, Vielzeuf D et al (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim Cosmochim Acta 49:37–48

    Article  Google Scholar 

  • Webster JD (1997) Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and applications for ore metal transport. Geochim Cosmochim Acta 61:1017–1029

    Article  Google Scholar 

  • Webster JD, Vetere F, Botcharnikov RE, Goldoff B, McBirney A, Doherty AL (2015) Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 °C: applications to magmas of Augustine Volcano, Alaska. Am Mineral 100:522–535

    Article  Google Scholar 

  • Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430

    Google Scholar 

  • Westrich HR (1981) F–OH exchange equilibria between mica–amphibole mineral pairs. Contrib Mineral Petrol 78:318–323

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim Cosmochim Acta 58:4127–4145

    Article  Google Scholar 

  • Wolf MB, London D (1995) Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: differential apatite, monazite, and xenotime solubilities during anatexis. Am Mineral 80:765–775

    Article  Google Scholar 

  • Wones DR (1967) A low pressure investigation of the stability of phlogopite. Geochim Cosmochim Acta 31:2248–2253

    Article  Google Scholar 

  • Yardley BWD (1985) Apatite composition and fugacities of HF and HCl in metamorphic fluids. Mineral Mag 49:77–79

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1991) Partitioning of F–Cl–OH between minerals and hydrothermal fluids. Geochim Cosmochim Acta 55:1837–1858

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1992) F–Cl–OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56:3435–3467

    Article  Google Scholar 

  • Zhu C, Xu H, Ilton ES et al (1994) TEM–AEM observations of Cl-rich amphibole and biotite and possible petrologic implications. Am Mineral 79:909–920

    Google Scholar 

Download references

Acknowledgments

We thank Kostya Podlesskii for providing thin section of the granulite sample from Aldan (Fig. 11.7). The editor D.E. Harlov is thanked for his help and patience. Helpful suggestions and comments by Bill Glassley, Kåre Kullerud and Brian Tattitch helped to improve this chapter. Financial support for this study was provided by Russian Scientific Fund (grant 14-17-00581) and partially by Russian Foundation for Basic Research (grants 15-05-01053 and 16-05-00266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Aranovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aranovich, L., Safonov, O. (2018). Halogens in High-Grade Metamorphism. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_11

Download citation

Publish with us

Policies and ethics