Skip to main content

The Role of Halogens During Regional and Contact Metamorphism

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

Halogens are important elements for a range of geological processes during metamorphism from stabilizing mineral phases to being important ligands for mass transfer. Halogens are highly incompatible in most minerals, which makes it difficult to unravel their presence in the past. Minerals useful for understanding halogen behaviour during metamorphism include: scapolite, apatite, titanite, biotite, and amphibole. However, their ability to incorporate halogens depends on parameters such as bulk rock composition, fluid properties, and water-rock ratios . Comprehensive studies of halogens in regional metamorphic rocks and minerals, such as the Clearwater Region, Idaho, USA or the Mary Kathleen Fold Belt, Mt Isa Inlier, Australia, show that halogen contents are highly variable on a bulk rock- and rock layer-scale, reflecting protolith variations. Where low fluid-rock ratios occurred during regional metamorphism, pre-exisiting variations in halogen compositions and ratios across individual layers were not eliminated, resulting in large differences between halogen concentrations on a mineral- and rock-layer scale. Research on F and Cl in apatite in siliceous marbles from five classic aureoles highlights the use of this mineral regarding rock or fluid buffering, and in establishing fluid sources. Chlorine enrichment in biotite and amphibole, associated with regional albitization observed in Cloncurry, Australia or the Bamble Sector Norway, demonstrate advection of saline fluids during albitization and K-feldspar metasomatism that occur in association with regional mineralization. Chlorine-bearing fluids are capable of mobilizing large amounts of metals during large-scale metamorphism on a regional, whole rock, and mineral scale. Consequently, fluid flow could be an essential prerequisite to actively discharge metals from the metamorphic rocks. Recent analytical advancements allow for more routine analyses of halogen contents in minerals and fluid inclusions. For instance, in situ LA-ICP-MS analyses of Cl and Br allow for the reconstruction of the interaction of halogen-bearing fluids with crustal rocks in complex geological settings that have undergone multiple hydrothermal events. In such cases, scapolite can be used as an archive for fluid properties during metamorphism. For example, within the Mount Isa Inlier, it was found that the fluids, which interacted with calc-silicates in the Mary Kathleen Fold Belt, were of bittern brine derivation contrasting with the Cloncurry Region, where the fluids show evidence of dissolved halite. Magmatic fluid interaction with calc-silicate rocks was found to be localized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abercrombie HJ, Skippen GB, Marshall DD (1987) F-OH substitution in natural tremolite, talc, and phlogopite. Contrib Mineral Petrol 97:305–312

    Article  Google Scholar 

  • Abu Sharib ASAA, Sanislav IV (2013) Polymetamorphism accompanied switching in horizontal shortening during Isan Orogeny: example from the Eastern Fold Belt, Mount Isa Inlier, Australia. Tectonophysics 587:146–167

    Article  Google Scholar 

  • Ague JJ (1994) Mass transfer during bavorrian metamorphism of pelites, South-Central Connecticut. I: evidence for changes in composition and volume. Am J Sci 294:989–1057

    Article  Google Scholar 

  • Ague JJ (2003) Fluid infiltration and transport of major, minor, and trace elements during regional metamorphism of carbonate rocks, Wepawaug Schist, Connecticut, USA. Am J Sci 303:753–816

    Article  Google Scholar 

  • Alderton DHM, Pearce JA, Potts PJ (1980) Rare earth element mobility during granite alteration: evidence from south-west England. Earth Planet Sci Lett 49:149–165

    Article  Google Scholar 

  • Anderson GM, Burnham CW (1965) The solubility of quartz in supercritical water. Am J Sci 263:494–511

    Article  Google Scholar 

  • Anderson GM, Burnham CW (1967) Reaction of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressures. Am J Sci 265:12–27

    Article  Google Scholar 

  • Anderson GM, Burnham CW (1983) Feldspar solubility and the transport of aluminum under metamorphic conditions. Am J Sci 238:283–297

    Google Scholar 

  • Aranovich L, Safonov O (2018) Halogens in high-grade metamorphism. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 713–757

    Google Scholar 

  • Aranovich LY, Dubinina EO, Avdeenko AS, Lebedeva YM, Bushmin SA, Dolivo-Dobrovol’skii DD (2010) Oxygen isotopic composition of coexisting minerals of sillimanite-hypersthene rocks from the Por’ya bay area: evidence of fluid involvement in granulite-facies metamorphism. Geochem Int 48:739–751

    Article  Google Scholar 

  • Aranovich LY, Newton RC, Manning CE (2013) Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth Planet Sci Lett 374:111–120

    Article  Google Scholar 

  • Austrheim H, Putnis CV, Engvik AK, Putnis A (2008) Zircon coronas around Fe–Ti oxides: a physical reference frame for metamorphic and metasomatic reactions. Contrib Mineral Petrol 156:517–527

    Article  Google Scholar 

  • Banks DA, Giuliani G, Yardley BWD, Cheilletz A (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineral Dep 35:699–713

    Article  Google Scholar 

  • Barnes JD, Sharp ZD (2017) Chlorine isotope geochemistry. Rev Mineral Geochem 82(1):345–378

    Google Scholar 

  • Barnes J, Manning C, Scambelluri M, Selverstone J (2018) The behaviour of halogens during subduction-zone processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 545–590

    Google Scholar 

  • Barrett TJ, Anderson GM (1982) The solubility of sphalerite and galena in NaCl brines. Econ Geol 77:1923–1933

    Article  Google Scholar 

  • Beratan KK (1999) Miocene potassium metasomatism, Whipple Mountains, southeastern California: a datable tracer of extension-related fluid transport. Geology 27:259–262

    Google Scholar 

  • Bernal NF, Glesson SA, Dean AS, Liu XM, Hoskin P (2014) The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand. Geochim Cosmochim Acta 126:265–283

    Article  Google Scholar 

  • Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein HJ, Skar O, Nordgulen O (2008) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Norwegian Journal of Geology 88:13–42

    Google Scholar 

  • Bodart DE (1968) On the paragenesis of albitites. Nor Geol Tidskr 48:269–280

    Google Scholar 

  • Böhlke JK, Irwin JJ (1992) Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225

    Article  Google Scholar 

  • Boness M, Heumann KG, Haack U (1991) Cl, Br and I analyses of metamorphic and sedimentary rocks by isotope dilution mass spectrometry. Contrib Mineral Petrol 107:94–99

    Article  Google Scholar 

  • Bons PD, Gomez-Rivas E (2013) Gravitational fractionation of isotopes and dissolved components as a first-order process in crustal fluids. Econ Geol 106:1195–1201

    Article  Google Scholar 

  • Bottrell SH, Yardley BWD, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Minér 111:279–290

    Google Scholar 

  • Boulvais P, de Parseval P, D’Hulst A, Paris P (2006) Carbonate alteration associated with talc-chlorite mineralization in the eastern Pyrenees, with emphasis on the St. Barthelemy Massif. Mineral Petrol 88:499–526

    Article  Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geological systems: equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 47:1247–1275

    Article  Google Scholar 

  • Braitsch O, Herrmann AG (1963) Zur Geochemie des Broms in Salinaren Sedimenten, 1. Experimentelle Bestimmung der Br-Verteilung in verschiedenen natürlichen Salzsystemen. Geochim Cosmochim Acta 27:361–391

    Article  Google Scholar 

  • Budzyn B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Mineral 96:1547–1567

    Article  Google Scholar 

  • Caciagli NC, Manning CE (2003) The solubility of calcite in water at 5–16 kbar and 500–800 °C. Contrib Mineral Petrol 146:275–285

    Article  Google Scholar 

  • Cardenas AA, Girty GH, Hanson AD, Lahren MM, Knaack C, Johnson D (1996) Assessing differences in composition between low metamorphic grade mudstones and high-grade schists using log ratio techniques. J Geol 104:279–293

    Article  Google Scholar 

  • Chai JY, Muramatsu Y (2007) Determination of bromine and iodine in twenty-three geochemical reference materials by ICP-MS. Geostand Geoanal Res 31:143–150

    Article  Google Scholar 

  • Charoy B, Pollard PJ (1989) Albite-rich, silica-depleted metasomatic rocks at Emuford, northeast Queensland: Mineralogical, geochemical, and fluid inclusion constraints on hydrothermal evolution and tin mineralization. Econ Geol 84:1850–1874

    Article  Google Scholar 

  • Clark C, Schmidt-Mumm A, Faure K (2005) Timing and nature of fluid flow and alteration during mesoproterozoic shear zone formation, Olary domain, South Australia. J Metamorph Geol 23:147–164

    Article  Google Scholar 

  • Connolly JAD, Podladchikov YY (2013) A hydromechanical model for lower crustal fluid flow. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 599–658

    Chapter  Google Scholar 

  • Čopjaková R, Buriánek D, Škoda R, Houzar S (2009) Tourmalinites in the metamorphic complex of the Svratka Unit (Bohemian Massif) a study of compositional growth of tourmaline and considerations related to genesis. J Geosci 54:221–243

    Google Scholar 

  • Correns CW (1956) The geochemistry of the halogens. In: Ahrens LH, Rankama K, Runcom SK (eds) Physics and chemistry of the earth 1. Pergamon Press, London

    Google Scholar 

  • Cosca MA, Mezger K, Essene EJ (1998) The Baltica-Laurentia connection: Sveconorwegian (Grenvillian) metamorphism, cooling, and unroofing in the Bamble Sector, Norway. J Geol 106:539–552

    Article  Google Scholar 

  • Cosgrove ME (1970) Iodine in the Bituminous Kimmeridge shales of the Dorset coast, England. Geochim Cosmochim Acta 34:830–836

    Article  Google Scholar 

  • Coulson IM, Dipple GM, Raudsepp M (2001) Evolution of HF and HCl activity in magmatic volatiles of the gold-mineralized Emerald Lake pluton, Yukon Territory, Canada. Miner Dep 36:594–606

    Article  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327

    Article  Google Scholar 

  • Dahlgren S, Bogoch R, Magaritz M, Michard A (1993) Hydrothermal dolomite marbles associated with charnockitic magmatism in the Proterozoic Bamble Shear Belt, south Norway. Contrib Mineral Petrol 113:394–408

    Article  Google Scholar 

  • de Jong G, Williams PJ (1995) Giant metasomatic system formed during exhumation of mid-crustal Proterozoic rocks in the vicinity of the Cloncurry Fault, northwest Queensland. Aust J Earth Sci 42:281–290

    Article  Google Scholar 

  • Drummond MS, Ragland PC, Wesolowski D (1986) An example of trondhjemite genesis by means of alkali metasomatism: rockford Granite, Alabama Appalachians. Contrib Mineral Petrol 93:98–113

    Article  Google Scholar 

  • Dyson IA, Gatehouse CG, Jago JB (1996) Sequence stratigraphy of the Talisker Calc-siltstone and lateral equivalents in the Cambrian Kanmantoo Group. Geol Surv S Aust Q Geol Notes 129:27–41

    Google Scholar 

  • Eggenkamp H (2014) The geochemistry of stable chlorine and bromine isotopes. Springer, Heidelberg, p 172

    Google Scholar 

  • Eggenkamp HGM, Kreulen R, Koster Van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175

    Article  Google Scholar 

  • Eglinger A, Ferraina C, Tarantola A, Andre-Mayer SA, Vanderhaeghe O, Boiron M-C, Dubessy J, Richard A, Brouand M (2014) Hypersaline fluids generated by high-grade metamorphism of evaporites: fluid inclusion study of uranium occurrences in the Western Copperbelt. Contrib Mineral Petrol 167:967

    Google Scholar 

  • Elliott RB (1966) The association of amphibolite and albitite, Kragerö, south Norway. Geol Mag 103:1–7

    Article  Google Scholar 

  • Ellis AJ (1963) The solubility of calcite in sodium chloride solutions at high temperatures. Am J Sci 261:259–267

    Article  Google Scholar 

  • Ellis DE (1978) Stability and phase equilibria of chloride and carbonate bearing scapolites at 750°C and 400 bar. Geochim Cosmochim Acta 42:1271–1281

    Article  Google Scholar 

  • Enami M, Suzuki K, Liou JG, Bird DK (1993) Al-Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence. Eur J Mineral 5:219–231

    Article  Google Scholar 

  • Engvik AK, Putnis A, Fitz Gerald JD, Austrheim H (2008) Albitisation of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Mineral 46:1401–1415

    Article  Google Scholar 

  • Engvik AK, Mezger K, Wortelkamp S, Bast R, Corfu F, Korneliussen A, Ihlen P, Bingen B, Austrheim H (2011) Metasomatism of gabbro—mineral replacement and element mobilization during the Sveconorwegian metamorphic event. J Metam Geol 29:399–423

    Article  Google Scholar 

  • Engvik AK, Ihlen PM, Austrheim H (2014) Charactersiation of Na-metasomatism in the Sveconorwegian Bamble Sector of South Norway. Geosci Front 5:659–672

    Article  Google Scholar 

  • Ennis DJ, Dunbar NW, Campbell AR, Chapin CE (2000) The effects of K-metasomatism on the mineralogy and geochemistry of silicic ignimbrites near Socorro, New Mexico. Chem Geol 167:285–312

    Article  Google Scholar 

  • Evans BW, Shaw DM, Haughton DR (1969) Scapolite stroichiometry. Contrib Mineral Petrol 24:293–305

    Article  Google Scholar 

  • Evans KA, Powell R, Frost BR (2013) Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. Lithos 168–169:67–84

    Article  Google Scholar 

  • Fein JB, Walther JV (1989) Calcite solubility and speciation in supercritical NaCl-HCl aqueous fluids. Contrib Mineral Petrol 103:317–324

    Article  Google Scholar 

  • Ferry JM (1994) Overview of the petrologic record of fluid flow during regional metamorphism in northern New England. Am J Sci 294:905–988

    Article  Google Scholar 

  • Ferry JM, Dipple GM (1991) Fluid flow, mineral reactions and metasomatism. Geology 19:211–214

    Article  Google Scholar 

  • Ferry JM, Gerdes ML (1998) Chemically reactive fluid flow during metamorphism. Ann Rev Earth Planet Sci 26:255–287

    Article  Google Scholar 

  • Ferry JM, Gottschalk M (2009) The effect of fluid salinity on infiltration-driven contact metamorphism of carbonate rocks. Contrib Mineral Petrol 158:619–636

    Article  Google Scholar 

  • Ferry JM, Wing BA, Rumble D (2001) Formation of wollastonite by chemically reactive fluid flow during contact metamorphism, Mt. Morrison pendant, Sierra Nevada, California, USA. J Petrol 42:1705–1728

    Article  Google Scholar 

  • Frank E (1983) Alpine metamorphism of calcareous rocks along a cross-section in the Central Alps: occurence and breakdown of muscovite, margarite and paragonite. Schweiz Mineral Petrogr Mitt 63:37–93

    Google Scholar 

  • Fuge R (1974a) Chlorine. In: Wedepohl KH (ed) Handbook of geochemistry, Chapter 17. Springer, Berlin

    Google Scholar 

  • Fuge R (1974b) Bromine. In: Wedepohl KH (ed) Handbook of geochemistry, Chapter 35. Springer, Berlin

    Google Scholar 

  • Fuge R (1974c) Iodine. In: Wedepohl KH (ed) Handbook of geochemistry, Chapter 53. Springer, Berlin

    Google Scholar 

  • Fuge R (1988) Sources of halogens in the environment, influences on human and animal health. Environ Geochem Health 10:51–61

    Article  Google Scholar 

  • Fuge R (2005) Soils and iodine deficiency. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds.) Essentials of medical geology. Elsevier, San Diego, pp 417–433

    Google Scholar 

  • Fuge R, Johnson CC (1984) Evidence for the chalcophile nature of iodine. Chem Geol 43:347–352

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Hu Y-K, Zhao Z-D (1998) Chemical composition of the continental crust as revealed by studies in east China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Giere R (1990) Hydrothermal mobility of Ti, Zr, and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67

    Article  Google Scholar 

  • Giggenbach WF (1995) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 68:89–116

    Article  Google Scholar 

  • Gilbert F, Guillaume D, Laporte D (1997) Importance of fluid immiscibility in the H2O-CO2-NaCl system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900 °C and wetting textures. Eur J Mineral 10:1109–1123

    Article  Google Scholar 

  • Glassley WE, Korstgard JA, Sorensen K (2010) K-rich brine and chemical modification of the crust during continent–continent collision, Nagssugtoqidian Orogen, West Greenland. Precambr Geol 180:47–62

    Article  Google Scholar 

  • Gleeson SA, Yardley BWD, Munz IA, Boyce AJ (2003) Infiltration of basinal fluids into high-grade basement, south Norway: sources and behaviour of waters and brines. Geofluids 3:33–48

    Article  Google Scholar 

  • Goldoff B, Webster JD, Harlov DE (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. Am Mineral 97:1103–1115

    Article  Google Scholar 

  • Goldsmith JR, Newton RC (1977) Scapolite-plagioclase stability relations at high pressures and temperatures in the system NaAlSi3O8-CaAl2Si2O8-CaCO3-CaSO4. Am Mineral 62:1063–1081

    Google Scholar 

  • Gomez-Pugnaire MT, Franz G, Sanchez-Vizcaino VL (1994) Retrograde formation of NaCl-scapolite in high pressure metaevaporites from Cordilleras Beticas (Spain). Contrib Mineral Petrol 116(4):448–461

    Article  Google Scholar 

  • González-Acebrón L, Arribas J, Maas R (2010) The role of sandstone provenance in diagenetic albitization of feldspars. A case study in the Jurassic Tera Group sandstones (Cameros Basin, NE Spain). Sed Geol 229:53–63

    Article  Google Scholar 

  • Greenwood HJ (1975) Buffering of pore fluids by metamorphic reactions. Am J Sci 275:573–593

    Article  Google Scholar 

  • Haack U, Heinrichs H, Boness M, Schneider A (1984) Loss of metals from pelites during regional metamorphism. Contrib Mineral Petrol 85:116–132

    Article  Google Scholar 

  • Haines PW, Jago JB, Gum JC (2001) Turbidite deposition in the Cambrian Kanmantoo Group, South Australia. Aust J Earth Sci 48:465–478

    Article  Google Scholar 

  • Hammerli J, Rusk B, Spandler C, Emsbo P, Oliver NHS (2013) In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources. Chem Geol 337–338:75–87

    Article  Google Scholar 

  • Hammerli J, Spandler C, Oliver NHS, Rusk B (2014) Cl/Br of scapolite as a fluid tracer in the earth’s crust: insights into fluid sources in the Mary Kathleen Fold Belt, Mt. Isa Inlier. Australia. J Metamorph Geol 32:93–112

    Article  Google Scholar 

  • Hammerli J, Spandler C, Oliver NHS, Sossi P, Dipple G (2015) Zn and Pb mobility during metamorphism of sedimentary rocks and potential implications for some base metal deposits. Miner Dep 50:657–664

    Article  Google Scholar 

  • Hammerli J, Spandler C, Oliver NHS (2016) Element mobility and redistribution during upper crustal metamorphism: an example from the Eastern Mt Lofty Ranges, South Australia. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-016-1239-7

    Google Scholar 

  • Hansen EC, Harlov DE (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite- to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1690

    Article  Google Scholar 

  • Hardie LA (1990) The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites. Am J Sci 290:43–106

    Article  Google Scholar 

  • Harlov DE (2000) Pressure–temperature estimation in orthopyroxene–garnet bearing granulite facies rocks, Bamble Sector, Norway. Mineral Petrol 69:11–33

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2002a) High-grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano Zone, Northern Italy Part I: petrography and silicate mineral chemistry. J Petrol 43:769–799

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2002b) High-grade fluid metasomatism on both a local and regional scale: the Seward Peninsula, Alaska and the Val Strona di Omegna, Ivrea-Verbano Zone, Northern Italy Part II: phosphate mineral chemistry. J Petrol 43:801–824

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. part II. fluorapatite. Am Mineral 88:1209–1229

    Article  Google Scholar 

  • Harlov DE, Hetherington CJ (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: experiment and nature. Am Miner 95:1105–1108

    Article  Google Scholar 

  • Harlov DE, Hansen EC, Bigler C (1998) Petrologic evidence for K-feldspar metasomatism in granulite facies rocks. Chem Geol 151:373–386

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348

    Article  Google Scholar 

  • Haughton DR (1970) Plagioclase-Scapolite equilibrium. Can Mineral 10:854–870

    Google Scholar 

  • Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. Rev Mineral Geochem 67:1–54

    Article  Google Scholar 

  • Heinrich W (2007) Fluid immiscibility in metamorphic rocks. Rev Mineral 65:389–430

    Article  Google Scholar 

  • Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor—a fluid inclusion study using PIXE microanalysis. Econ Geol 87:1566–1583

    Article  Google Scholar 

  • Heinrich CA, Bain JHC, Fardy JJ, Waring CL (1993) Br/Cl geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted copper mineralization at Mount Isa, northern Australia. Geochim Cosmochim Acta 57:2991–3000

    Article  Google Scholar 

  • Helvaci C, Griffin WL (1983) Metamorphic feldspathization of metavolcanics and granitoids, Avnik area, Turkey. Contrib Mineral Petrol 83:309–319

    Article  Google Scholar 

  • Hemley JJ, Cygan GL, Fein JB, Robinson GR, D’Angelo WM (1992) Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: 1 Iron-copper-zinc-lead sulfide solubility relations. Econ Geol 87:1–22

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (2011) The incorporation of fluorine in tourmaline: internal crystallographic controls or external environmental influences? Can Mineral 49:41–56

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyn B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99:165–184

    Google Scholar 

  • Hietanen A (1967) Scapolite in the Belt Series in the St. Joe-Clearwater region, Idaho. Geol Soc Am Spec Paper 86:1–56

    Google Scholar 

  • Holland H (1972) Granite, solutions and base metal deposits. Econ Geol 67:281–301

    Article  Google Scholar 

  • Holness MB (1992) Equilibrium dihedral angles in the system quartz–H2O–CO2–NaCl at 800°C and 1–15 kbar: the effect of pressure and fluid composition on the permeability of quartzites. Earth Planet Sci Lett 114:171–184

    Article  Google Scholar 

  • Holness MB, Clemens JC (1999) Partial melting of the Appin quartzite driven by fracture-controlled H2O infiltration in the aureole of the Ballachulish igneous complex, Scottish Highlands. Contrib Mineral Petrol 136:154–168

    Article  Google Scholar 

  • Holness MB, Graham CM (1991) Equilibrium dihedral angles in the system H2O–CO2–NaCl–calcite, and implications for fluid flow during metamorphism. Contrib Mineral Petrol 108:368–383

    Article  Google Scholar 

  • Holness MB, Graham CM (1995) P-T-X effects on equilibrium carbonate–H2O–CO2–NaCl dihedral angles: constraints on carbonate permeability and the role of deformation during fluid infiltration. Contrib Mineral Petrol 119:301–313

    Article  Google Scholar 

  • Holser WT (1979a) Trace elements and isotopes in evaporites. Mineral Soc Amer: Rev Mineral 6:295–346

    Google Scholar 

  • Holser WT (1979b) Mineralogy of evaporites. In: Burns RG (ed) Marine minerals: reviews in Mineralogy, vol 6. Mineralogical Society of America, Washington D.C., pp 211–294

    Google Scholar 

  • Houston SJ, Smalley PC, Laycock A, Yardley BWD (2011) The relative importance of buffering and brine inputs in controlling the abundance of Na and Ca in sedimentary formation waters. Mar Petrol Geol 28:1242–1251

    Article  Google Scholar 

  • Hövelmann J, Putnis A, Geisler T, Schmidt B, Golla-Schindler U (2010) The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib Mineral Petrol 159:43–59

    Article  Google Scholar 

  • Hurai V, Lexa O, Schulmann K, Montigny R, Prochaska W, Frank W, Konečný P, Kráľ J, Thomas R, Chovan M (2008) Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids 8:181–207

    Article  Google Scholar 

  • Ilton ES, Eugster HP (1990) Partitioning of base metals between silicates, oxides, and a chloride-rich hydrothcrmal fluid. I. Evaluation of data derived from experimental and natural assemblages. In: Spencer RJ, Ming Chou I (eds) Fluid-mineral interactions: a tribute to H.P. Eugster. Geochem Soc, Spec Publ 2, pp. 157–169

    Google Scholar 

  • Irwin JJ, Roedder E (1995) Diverse origins of fluid in magmatic inclusions at Bingham (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall, UK), and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochim Cosmochim Acta 59:295–312

    Article  Google Scholar 

  • Jago JB, Gum JC, Burtt AC, Haines PW (2003) Stratigraphy of the Kanmantoo Group: a critical element of the Adelaide Fold Belt and the Palaeo-Pacific plate margin, Eastern Gondwana. Aust J Earth Sci 50:343–363

    Article  Google Scholar 

  • Jambon A, Deruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–107

    Article  Google Scholar 

  • Jamtveit B, Dahlgren S, Austrheim H (1997) High grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. Am Mineral 82:1241–1254

    Article  Google Scholar 

  • Johnson L, Burgess R, Turner G, Milledge HJ, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64:717–732

    Article  Google Scholar 

  • Katongo C, Koller F, Ntaflos T, Koeberl C, Tembo F (2011) Occurrence and origin of Scapolite in the Neoproterozoic Lufilian–Zambezi Belt, Zambia: evidence/role of brine-rich fluid infiltration during regional metamorphism. In: Ray J, Sen G, Gosh B (eds) Topics in igneous petrology. Springer, Dordrecht, pp 485

    Google Scholar 

  • Kendrick MA (2012) High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem Geol 292–293:116–126

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001a) Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochim Cosmochim Acta 65:2651–2668

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001b) Halogen and Ar-Ar age determinations of fluid inclusions in quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem Geol 177:351–370

    Article  Google Scholar 

  • Kendrick MA, Duncan RJ, Phillips D (2006) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin. Mt Isa, Australia. Chem Geol 235:325–351

    Article  Google Scholar 

  • Kendrick MA, Mark G, Phillips D (2007) Mid-crustal fluid mixing in a Proterozoic Fe oxide-Cu-Au deposit, Ernest Henry, Australia: evidence from Ar, Kr, Xe, Cl, Br, and I. Earth Planet Sci Lett 256:328–343

    Article  Google Scholar 

  • Kendrick MA, Baker T, Fu B, Philips D, Williams PJ (2008) Noble gas and halogen constraints on regionally extensive mid-crustal Na-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambr Res 163:131–150

    Article  Google Scholar 

  • Kendrick MA, Phillips D, Wallace M, Miller JMcL (2011) Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: a case study from the Lennard Shelf, Australia. Appl Geochem 26:2089–2100

    Article  Google Scholar 

  • Keppler H (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib Mineral Petrol 114:479–488

    Article  Google Scholar 

  • Kish L, Cuney M (1981) Uraninite-albite veins from the Mistamisk Valley of the Labrador Trough Quebec. Mineral Mag 44:471–483

    Article  Google Scholar 

  • Klemme S, Stalder R (2018) Halogens in the Earth’s mantle: what we know and what we don’t. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 847–869

    Google Scholar 

  • Komada N, Moecher DP, Westrum EF (1996) Thermodynamic properties of Scapolites at temperatures ranging from 10 K to 1000 K. J Chem Thermodyn 28:941–973

    Article  Google Scholar 

  • Korzhinskiy MA (1981) Apatite solid solution as indicators of the fugacity of HCl and HF in hydrothermal fluids. Geochem Int 3:45–60

    Google Scholar 

  • Kotel’nikov AR (1987) Hydrothermal stability of sulfur bearing scapolite. Geochem Inter 24(2):80–90

    Google Scholar 

  • Kuhn BK, Reuser E, Powell R, Günther D (2005) Metamorphic evolution of calc-silicates in the Central Alps, Switzerland. Mineral Petrol Mitt 85:175–190

    Google Scholar 

  • Kullerud K, Erambert M (1999) Cl-scapolite, Cl-amphiboles, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid–mineral interactions in the deep crust. Geochim Cosmochim Acta 63:3829–3844

    Article  Google Scholar 

  • Kusebauch C, John T, Whitehouse MJ, Engvik AK (2015a) Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway). Contrib Mineral Petrol 170(4):34

    Google Scholar 

  • Kusebauch C, John T, Whitehouse MJ, Klemme S, Putnis A (2015b) Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochim Cosmochim Acta 170:225–246

    Article  Google Scholar 

  • Kusebauch C, John T, Barnes JD, Klügel S, Austrheim HO (2015c) Halogen element and stable chlorine isotope fractionation caused by fluid-rock interaction (Bamble Sector, SE Norway). J Petrol 56(2):299–324. https://doi.org/10.1093/petrology/egv001

  • Kwak TAP (1977) Scapolite compositional change in a metamorphic gradient and ist bearing on the identification of meta-evaporite sequences. Geol Mag 114(5):343–354

    Article  Google Scholar 

  • Lagache M, Weisbrod A (1977) The system: two alkali feldspar-KCI-NaCI-H, O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62:77–101

    Article  Google Scholar 

  • Lang HM, Rice JM (1985) Metamorphism of pelitic rocks in the Snow Peakarea, northern Idaho: sequence of events and regional implications. Geol Soc Am Bull 96:73l–736

    Article  Google Scholar 

  • Laporte D, Watson EB (1991) Direct observation of near-equilibrium pore geometry in synthetic quartzites at 600–800°C and 2–10.5 kbar. J Geol 99:873–878

    Article  Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G. Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead–zinc deposits: a global perspective. Econ Geol 100th Anniversary 100:561–607

    Google Scholar 

  • Lecumberri-Sanchez P, Bodnar R (2018) Halogen geochemistry of ore deposits: contributions towards understanding sources and processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 261–305

    Chapter  Google Scholar 

  • Liebscher A, Luders V, Heinrich W, Schettler G (2006) Br/Cl signature of hydrothermal fluids: liquid-vapour fractionation of bromine revisited. Geofluids 6:113–121

    Article  Google Scholar 

  • Lieftink DJ, Nijland TG, Maijer C (1993) Cl-rich scapolite from Ødegårdens Verk, Bamble, Norway. Norsk Geologisk Tidsskrift 73:55–57

    Google Scholar 

  • Lovering JF, Widdowson JR (1969) Electron microprobe determination of sulphur coordination in minerals. Lithos 1:264–267

    Article  Google Scholar 

  • Ludington S (1978) The biotite-apatite geothermometer revisited. Am Mineral 63:551–553

    Google Scholar 

  • Mahon WAJ (1966) Natural hydrothermal systems and the reaction of hot water with sedimentary rocks. New Zealand J Sci 10:206–221

    Google Scholar 

  • Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Article  Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol 76:206–215

    Article  Google Scholar 

  • Manning CE, Aranovich LY (2014) Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects. Precambr Res 253:6–16

    Article  Google Scholar 

  • Mark G, Williams PJ, Blake KL, Van Achterberg E, Ryan CG (2005) Br–Cl fractionation in mid-crustal fluid–rock systems. Geochim Cosmochim Acta 69S:A843

    Google Scholar 

  • Markl G, Bücher K (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391:781–783

    Article  Google Scholar 

  • Markl G, Piazolo S (1998) Halogen-bearing minerals in syenites and high grade marbles of Dronning Maud Land, Antarctica: monitors of fluid compositional changes during late-magmatic fluid–rock interaction processes. Contrib Mineral Petrol 132:246–268

    Article  Google Scholar 

  • Markl G, Piazolo S (1999) Stability of high–Al titanite from low-pressure calc-silicates in light of fluid and host rock composition. Am Mineral 84:37–47

    Article  Google Scholar 

  • Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255

    Article  Google Scholar 

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origin. Geochim Cosmochim Acta 57:4377–4389

    Article  Google Scholar 

  • Masters RL, Ague JJ (2005) Regional-scale fluid flow and element mobility in Barrow’s metamorphic zones, Stonehaven, Scotland. Contrib Mineral Petrol 150:1–18

    Article  Google Scholar 

  • Matheson RS, Searl RA (1956) Mary Kathleen Uranium Deposit, Mont Isa-Cloncurry District, Queensland, Australia. Econ Geol 51:528–540

    Article  Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br and K+ with halite. J Sed Res 57:928–937

    Google Scholar 

  • McKibben AE, Williams AE (1989) Metal speciation and solubility in saline hydrothermal fluids: an empirical approach based on geothermal brine data. Econ Geol 84:1996–2007

    Article  Google Scholar 

  • Michard A, Albarede F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60

    Article  Google Scholar 

  • Minarik B (2003) Planetary science: the core of planet formation. Nature 422(6928):126–128

    Google Scholar 

  • Moazzen M, Oberhänsli R, Hajialioghli R, Möller A, Bousquet R, Droop GTR, Jahangiri A (2009) Peak and post-peak P-T conditions and fluid composition for scapolite clinopyroxene–garnet cac-slicate rocks from the Takab area, NW Iran. Eur J Mineral 21:149–162

    Article  Google Scholar 

  • Moecher PD, Essene EJ (1990) Phase equilibria for calcic scapolite, and implications of variable A1-Si disorder for P-T, T-XCO2, and a-X relations. J Petrol 31:99–124

    Article  Google Scholar 

  • Moecher PD, Essene EJ (1991) Calculation of CO2 activities using scapolite equilibria: constraints on the presence and composition of a fluid phase during high grade metamorphism. Contrib Mineral Petrol 108:219–240

    Article  Google Scholar 

  • Mora CI, Valley JW (1989) Halogen-rich scapolite and biotite: implications for metamorphic fluid-rock interaction. Am Mineral 74:721–737

    Google Scholar 

  • Morad S, Morten B, Knarud R, Nystuen J (1990) Albitization of detrital plagioclase in Triassic reservoir sandstones from the Snorre Field, Norwegian North Sea. J Sed Petrol 60:411–425

    Google Scholar 

  • Möller P, Schulz S, Jacob KH (1980) Formation of fluorite in sedimentary basins. Chem Geol 31:97–117

    Article  Google Scholar 

  • Munoz JL (1984) F-OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. Micas. Rev Mineral Soc Am 13:469–494

    Google Scholar 

  • Munoz JL (1992) Calculation of HF and HCl fugacities from biotite compositions: revised equations. Geol Soc Am Abstr Progr 26:221

    Google Scholar 

  • Munoz JL, Eugster HP (1969) Experimental control of fluorine reactions in hydrothermal systems. Am Mineral 54:943–959

    Google Scholar 

  • Munoz JL, Ludington SD (1974) Fluoride-hydroxyl exchange in biotite. Am J Sci 274:396–413

    Article  Google Scholar 

  • Munoz JL, Ludington SD (1977) Fluorine-hydroxyl exchange in synthetic muscovite, with application to muscovite-biotite assemblages. Am Mineral 62:304–308

    Google Scholar 

  • Munoz JL, Swenson A (1981) Chloride-hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Econ Geol 76:2212–2221

    Article  Google Scholar 

  • Munz IA, Wayne D, Austrheim H (1994) Retrograde fluid infiltration in the high-grade Modum Complex, South Norway—evidence for age, source and REE mobility. Contrib Mineral Petrol 116:32–46

    Article  Google Scholar 

  • Munz IA, Yardley BWD, Banks DA, Wayne D (1995) Deep penetration of sedimentary fluids in basement rocks from southern Norway—evidence from hydrocarbon and brine inclusions in quartz veins. Geochim Cosmochim Acta 59:239–254

    Article  Google Scholar 

  • Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the earth’s crust. Chem Geol 147:201–216

    Article  Google Scholar 

  • Newton RC, Manning CE (2000) Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperature: 2–15 kbar and 500–900 °C. Geochim Cosmochim Acta 64:2993–3005

    Article  Google Scholar 

  • Newton RC, Manning CE (2002) Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: implications for metasomatic processes in shear zones. Am Mineral 87:1401–1409

    Article  Google Scholar 

  • Newton RC, Aranovich LY, Hansen EC, Vandenheuvel BA (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precambr Res 91:41–63

    Article  Google Scholar 

  • Nijland TG, Touret JLR (2001) Replacement of graphic pegmatite by graphic albite–actinolite–clinopyroxene intergrowths (Mjavatn, southern Norway). Eur J Mineral 13:41–50

    Article  Google Scholar 

  • Nijland TG, Jansen JB, Maijer C (1993) Halogen geochemistry of fluid during amphibolite-granulite metamorphism as indicate by apatite and hydrous silicates in basic rocks from the Bamble Sector, South Norway. Lithos 30:167–189

    Article  Google Scholar 

  • Nijland TJ, Harlov DE, Andersen T (2014) The Bamble sector, south Norway: a review. Geosci Front 5:635–658

    Article  Google Scholar 

  • Norberg N, Neusser G, Wirth R, Harlov D (2011) Microstructural evolution during experimental albitization of K-rich alkali feldspar. Contrib Mineral Petrol 162:531–546

    Article  Google Scholar 

  • Norberg N, Harlov D, Neusser G, Wirth R, Rhede D, Morales L (2013) Experimental development of patch perthite from synthetic cryptoperthite: microstructural evolution and chemical re-equilibration. Am Mineral 98:1429–1441

    Article  Google Scholar 

  • Nordstrom DK, Lindblom S, Donahue RJ, Barton CC (1989) Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry. Geochim Cosmochim Acta 53:1741–1755

    Article  Google Scholar 

  • Novgorodov PG (1977) On the solubility of quartz in H2O + CO2 and H2O + NaCl at 700 °C and 1.5 kb pressure. Geochem Inter 14:191–193

    Google Scholar 

  • Oliver NHS (1995) Hydrothermal history of the Mary Kathleen Fold Belt, Mt Isa Block, Queensland. Aust J Earth Sci 42:267–279

    Article  Google Scholar 

  • Oliver NHS (1996) Review and classification of structural controls on fluid flow during regional metamorphism. J Metam Geol 14:477–492

    Article  Google Scholar 

  • Oliver NHS, Valenta RK, Wall VJ (1990) The effect of heterogeneous stress and strain on metamorphic fluid flow, Mary Kathleen, Australia, and a model for large-scale fluid circulation. J Metam Geol 8:311–331

    Article  Google Scholar 

  • Oliver NHS, Holcombe RJ, Hill EJ, Pearson PJ (1991) Tectono-metamorphic evolution of the Mary Kathleen Fold Belt, northwest Queensland: a reflection of mantle plume processes? Aust J Earth Sci 38:425–455

    Article  Google Scholar 

  • Oliver NHS, Wall VJ, Cartwright I (1992) Internal control of fluid compositions in amphibolite-facies scapolitic calc-silicates, Mary Kathleen, Australia. Contrib Mineral Petrol 111:94–112

    Article  Google Scholar 

  • Oliver NHS, Rawling TJ, Cartwright I, Pearson P (1994) High-temperature fluid-rock interaction and scapolitization in an extension-related hydrothermal system, Mary Kathleen, Australia. J Petrol 35:1455–1491

    Google Scholar 

  • Oliver NHS, Pearson PJ, Holcombe RJ, Ord A (1999) Mary Kathleen metamorphic–hydrothermal uranium-rare-earth deposit: ore genesis and a numerical model of coupled deformation and fluid flow. Aust J Earth Sci 46:467–484

    Article  Google Scholar 

  • Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide–copper–gold deposits; eastern Mt. Isa Block, Australia. Econ Geol 99:1145–1176

    Article  Google Scholar 

  • Orville PM (1962) Alkali metasomatism and feldspars. Norsk Geol Tidsskr 42(2) Halvbind (Feldspar vol):283–316

    Google Scholar 

  • Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261:201–237

    Article  Google Scholar 

  • Orville PM (1972) Plagioclase cation exchange equilibria with aqueous chloride solutions: results at 700 °C and 2000 bars in the presence of quartz. Am J Sci 272:234–272

    Article  Google Scholar 

  • Orville PM (1975) Stability of scapolite in the system Ab-An-NaCl-CaCO3 at 4 kb and 750 °C. Geochim Cosmochim Acta 39:1091–1105

    Article  Google Scholar 

  • Oterdoom WH, Wenk H-R (1983) Ordering and composition of scapolite: field observations and structural interpretations. Contrib Mineral Petrol 83:330–341

    Article  Google Scholar 

  • Ottolini L, Cámara F, Bigi S (2000) An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF. Am Mineral 85:89–102

    Article  Google Scholar 

  • Pan Y, Dong P (2003) Bromine in scapolite-group minerals and sodalite: XRF microprobe analysis, exchange experiments, and application to skarn deposits. Can Mineral 41:529–540

    Article  Google Scholar 

  • Pan Y, Fleet ME, Ray GE (1994) Scapolite in two Canadian gold deposits: Nickel Plate, British Columbia and Helmo, Ontario. Can Mineral 32:825–837

    Google Scholar 

  • Pattison DRM (1987) Variations in Mg/(Mg + Fe), F, and (Fe, Mg)Si = 2Al in pelitic minerals in the Ballachulish thermal aureole, Scotland. Am Mineral 72:255–272

    Google Scholar 

  • Petersen EU, Essene EJ, Peacor DR (1982) Fluorine end-member micas and amphiboles. Am Mineral 67:538–544

    Google Scholar 

  • Penniston-Dorland SC, Ferry JM (2005) Coupled dichotomies of apatite and fluid composition during contact metamorphism of siliceous carbonate rocks. Am Mineral 90:1606–1618

    Article  Google Scholar 

  • Piazolo S, Markl G (1999) Humite- and scapolite-bearing assemblages in marbles and calcsilicates of Dronning Maud Land, Antarctica: new data for Gondwana reconstructions. J Metam Geol 17:91–107

    Article  Google Scholar 

  • Pirajno F (2018) Halogens in hydrothermal fluids and their role in the formation and evolution of hydrothermal mineral systems. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 759–804

    Google Scholar 

  • Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R, Brewer TS (2006) Sources of metals and fluids in orogenic gold deposits: insights from the Otago and Alpine Schists, New Zealand. Econ Geol 101:1525–1546

    Article  Google Scholar 

  • Poujol M, Boulvais P, Kosler J (2010) Regional-scale Cretaceous albitization in the Pyrenees: evidence from in situ U–Th–Pb dating of monazite, titanite and zircon. J Geol Soc 167:751–767

    Article  Google Scholar 

  • Preiss WV (2000) The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambr Res 100:21–63

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic Mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction. Rev Mineral Geochem (Oelkers EH and Schott J editors) 70:87–124

    Google Scholar 

  • Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous red-clouded feldspars: evidence of large-scale crustal fluid–rock interaction. Lithos 95:10–18

    Article  Google Scholar 

  • Ramseyer K, Boles JR, Lichtner PC (1992) Mechanism of plagioclase albitization. J Sed Petrol 62:349–356

    Google Scholar 

  • Rapp JF, Klemme S, Butler IB, Harley SL (2010) Extremely high solubility of rutile in chloride and fuoride-bearing metamorphic fuids: an experimental investigation. Geology 38:323–326

    Article  Google Scholar 

  • Reyes AG, Trompetter WJ (2012) Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand. Chem Geol 98:228–243

    Google Scholar 

  • Riley JP, Chester R (1971) Introduction to marine chemistry. Academic Press, London, p 456

    Google Scholar 

  • Rimstidt JD (1997) Gangue mineral transport and deposition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, p 487–516

    Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Ross M, Smith WL, Ashton WH (1968) Triclinic talc and associated amphiboles from Gouverneur mining district, New York. Am Mineral 53:751–769

    Google Scholar 

  • Rubenach M (2012) Structural controls of metasomatism on a regional scale. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes, Springer, Berlin, pp 93–140

    Google Scholar 

  • Rubenach MJ (2005) Relative timing of albitization and chlorine enrichment in biotite in Proterozoic schists, Snake Creek Anticline, Mount Isa Inlier, northeastern Australia. Can Mineral 43:349–366

    Article  Google Scholar 

  • Rubenach MJ, Foster DRW, Evins PM, Blake KL, Fanning CM (2008) Age constraints on the tectonothermal evolution of the Selwyn Zone, Eastern fold belt, Mount Isa Inlier. Precambr Res 163:81–107

    Article  Google Scholar 

  • Rumble D (1977) Mineralogy, petrology, and oxygen isotope geochemistry of the Clough Formation, Black Mountain, Western New Hampshire, USA. J Petrol 19:317–340

    Article  Google Scholar 

  • Ryan CG, Heinrich CA, Mernagh TP (1993) PIXE microanalysis of fluid inclusions and ist application to study ore metal segregation between magmatic brine and vapor. Nucl Instrum Methods Phys Res Sect B 77:463–471

    Article  Google Scholar 

  • Sallet R (2000) Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F-OH biotite-apatite thermometer grid. Lithos 50:241–253

    Article  Google Scholar 

  • Sanchez V, Vindel E, Martin-Crespo M, Corbella M, Cardellach E, Banks DA (2009) Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids 9:338–355

    Article  Google Scholar 

  • Satish-Kumar M, Hermann J, Tsunogae T, Osanai Y (2006) Carbonation of Cl-rich scapolite boudins in Skallen, East Antarctica: evidence for changing fluid condition in the continental crust. J Metamorph Geol 24:241–261

    Article  Google Scholar 

  • Selverstone J, Sharp ZD (2015) Chlorine isotope behavior during prograde metamorphism of sedimentary rocks. Earth Planet Sci Lett 417:120–131

    Article  Google Scholar 

  • Sengupta P, Raith MM, Datta A (2004) Stability of fluorite and titanite in a calc–silicate rock from the Vizianagram area, Eastern Ghats Belt, India. J Metamorph Geol 22:345–359

    Article  Google Scholar 

  • Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CA (2011) Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem Geol 284:35–44

    Google Scholar 

  • Seward TM, Barnes HL (1997) Metal transport by hydrothermal ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 435–486

    Google Scholar 

  • Shaw DM (1960) The geochemistry of scapolite Part 1. Previous work and general mineralogy. J Petrol 1:218–260

    Article  Google Scholar 

  • Shmulovich KI, Graham C (2008) Plagioclase-aqueous solution equilibrium: concentration dependence. Petrol 16:177–192

    Article  Google Scholar 

  • Shmulovich KI, Graham CM, Yardley BWD (2001) Quartz, albite and diopside solubilities in H2O-NaCl fluids at 0.5–0.9 Gpa. Contrib Mineral Petrol 141:95–108

    Article  Google Scholar 

  • Shmulovich KI, Graham CM, Yardley BWD (2006) Solubility of quartz in crustal fluids: experiments and general equations for salt solutions and H2O-CO2 mixtures at 400–800°C and 0.1–0.9 Gpa. Geofluids 6:154–167

    Article  Google Scholar 

  • Sisson VB (I987) Halogen geochemistry as an indicator of metamorphic fluid interaction with the Ponder Pluton, Coast Plutonic Complex, British Columbia, Canada. Contrib Mineral Petrol 95:123–131

    Google Scholar 

  • Sisson VB, Hollister LS (1990) A fluid-inclusion study of metamorphosed pelitic and carbonate rocks, south-central Maine. Am Mineral 75:59–70

    Google Scholar 

  • Smith MP, Yardley BWD (1999) Fluid evolution during metamorphism of the Otago Schist, New Zealand: (II) Influence of detrital apatite on fluid salinity. J Metam Geol 17:187–193

    Article  Google Scholar 

  • Sokolova E, Hawthorne FC (2008) The crystal chemistry of the scapolite-group minerals. 1. Crystal structure and long-range order. Can Mineral 46:1527–1554

    Article  Google Scholar 

  • Spötl C, Kralik M, Kunk MJ (1996) Authigenic feldspar as an indicator of paleo-rock/water intercalations in permian carbonates of the Northern Calcareous Alps, Austria. J Sed Res 66:139–146

    Google Scholar 

  • Stormer JC, Carmichael ISE (1971) Fluorine-hydroxyl exchange in apatite and biotite: a potential geothermometer. Contrib Mineral Petrol 81:121–131

    Article  Google Scholar 

  • Stormer JC, Milton JR, Pierson L, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648

    Google Scholar 

  • Symmes GH, Ferry JM (1991) Evidence from mineral assemblages for infiltration of pelitic schists by aqueous fluids during metamorphism. Contrib Mineral Petrol 108:419–438

    Article  Google Scholar 

  • Tanis EA, Simon AC, Tschauner O, Chow P, Xiao Y, Burnley P, Cline CJ, Hanchar JM, Pettke T, Shen G, Zhao Y (2015) The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C. Am Mineral 100:1600–1609

    Article  Google Scholar 

  • Tanis EA, Simon A, Zhang Y, Chow P, Xiao Y, Hanchar JM, Tschauner O, Shen G (2016) Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5–2.79 GPa and 250–650°C. Geochim Cosmochim Acta 177(2016):170–181. http://doi.org/10.1016/j.gca.2016.01.003

  • Teertstra TK, Sherriff BL (1996) Scapolite cell parameter trends along the solid solution series. Am Mineral 81:169–180

    Article  Google Scholar 

  • Teertstra TK, Sherriff BL (1997) Substitutional mechanisms, compositional trends and the end-member formulae of scapolite. Chem Geol 136:223–260

    Article  Google Scholar 

  • Tell I (1974) Hydrothermal studies on fluorine metamorphic reactions in siliceous dolomite. Contrib Mineral Petrol 43:99–110

    Article  Google Scholar 

  • Torres-Ruiz J, Pesquera A, Gil-Crespo PP, Velilla N (2003) Origin and petrogenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain). Chem Geol 197:55–86

    Article  Google Scholar 

  • Tropper P, Manning CE (2005) Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. Am Mineral 90:502–505

    Google Scholar 

  • Tropper P, Manning CE (2007) The solubility of fluorite in H2O and H2O-NaCl at high pressure and temperature. Chem Geol 242:299–306

    Article  Google Scholar 

  • Tropper P, Manning CE, Essene EJ (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. J Petrol 43:1787–1814

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800 °C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem Geol 282:58–66

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2013) Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800°C and 1GPa: implications for rare earth element transport in high-grade metamorphic fluids. Geofluids 13:372–380

    Article  Google Scholar 

  • Trommsdoff V, Skippen G (1986) Vapour loss (‘‘boiling’’) as a mechanism for fluid evolution in metamorphic rocks. Contrib Mineral Petrol 94:317–322

    Article  Google Scholar 

  • Trommsdorff V, Skippen G, Ulmer P (1985) Halite and sylvite as solid inclusions in high-grade metamorphic rocks. Contrib Mineral Petrol 89:24–29

    Article  Google Scholar 

  • Valley JW, Petersen EU, Essene EJ, Bowman JR (1982) Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositons. Am Mineral 67:545–557

    Google Scholar 

  • Valley JW, Bohlen SR, Essene EJ, Lam W (1990) Metamorphism in the Adirondacks II. The role of fluids. J Petrol 31:555–596

    Article  Google Scholar 

  • Van den Bleeken G, Corteel C, Van den Haute P (2007) Epigenetic to low-grade tourmaline in the Gdoumont metaconglomerates (Belgium): a sensitive probe of the chemical environment of formation. Lithos 95:165–176

    Article  Google Scholar 

  • Vanko DA, Bonnin-Mosbah M, Philippot P, Roedder E, Sutton SR (2001) Fluid inclusions in quartz from oceanic hydrothermal specimens and the Bingham, Utah porphyry-Cu deposit: a study with PIXE and SXRF. Chem Geol 173:227–238

    Article  Google Scholar 

  • Volfinger M, Robert J-L, Vielzeuf D, Neiva AMR (1985) Structural control of the chlorine content of OH-bearing minerals (micas and amphiboles). Geochim Cosmochim Acta 49:37–48

    Article  Google Scholar 

  • von Knorring O, Kennedy WQ (1958) The mineral paragenesis and metamorphic status of garnet-hornblende-pyroxene-scapolite gneiss from Ghana (Gold Coast). Mineral Mag 31:846–859

    Article  Google Scholar 

  • Walther JV, Orville PM (1982) Volatile production and transport in regional metamorphism. Contrib Mineral Petrol 79:252–257

    Article  Google Scholar 

  • Warren JK (1997) Evaporites, brines and base metals: fluids and ’the evaporite that was. Aust J Earth Sci 44:149–183

    Article  Google Scholar 

  • Warren JK (1999) Evaporites: their evolution and economics. Blackwell Science, Oxford, 438pp

    Google Scholar 

  • Watson ED, Brenan JM (1987) Fluids in the lithosphere: 1. Experimentally-determined wetting characteristics of CO2 H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet Sci Lett 85:497–515

    Article  Google Scholar 

  • Wedepohl H (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  Google Scholar 

  • Wedepohl KH (1987) The chlorine and sulfur crustal cycle—abundance of evaporites. In: Rodriguez-Clemente R, Tardy YŽ (eds) Geochemistry and mineral formation in the earth surface. Consejo Superior de Investigaciones Cientificas Centre National de la Recherche Scientifique, Madrid, pp 3–27

    Google Scholar 

  • Williams ML, Jerconovic MJ, Harlov DE, Budzyn B, Hetherington CJ (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225

    Article  Google Scholar 

  • Withnall IW, Hutton LJ (2012) North Australian craton. In: Jell, PA (ed) Geology of Queensland. Queensland Government, Australia, pp 113–224

    Google Scholar 

  • Worden R (2018) Halogen elements in sedimentary systems and their evolution during diagenesis. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 185–260

    Chapter  Google Scholar 

  • Xie Z, Walther JV (1993) Quartz solubilities in NaCl solutions with and without wollastonite at elevated temperatures and pressures. Geochim Cosmochim Acta 57:1947–1955

    Article  Google Scholar 

  • Yardley BW (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Article  Google Scholar 

  • Yardley BWD (1996) The evolution of fluids through the metamorphic cycle. In: Jamtveit B, Yardley BWD (eds) Fluid flow and transport in rocks. Chapman & Hall, London, pp 99–121

    Google Scholar 

  • Yardley BWD (2009) The role of water in crustal evolution. J Geol Soc 166:585–600

    Article  Google Scholar 

  • Yardley BWD, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3(1):127

    Article  Google Scholar 

  • Yardley BWD, Graham JT (2002) Origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1991) Partitioning of F-Cl-OH between minerals in hydrothermal fluids. Geochim Cosmochim Acta 55:1837–1858

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1992) F-Cl-OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56:3435–3467

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Nick Oliver for early discussions and Carl Spandler for helpful suggestions and comments as well as B. Yardley, H. Austrheim and W. Glassley for their reviews that helped to improve this chapter considerably. The editors D.E. Harlov and L. Aranovich are thanked for their help and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hammerli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammerli, J., Rubenach, M. (2018). The Role of Halogens During Regional and Contact Metamorphism. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_10

Download citation

Publish with us

Policies and ethics