Skip to main content

Optical Characterization of Graphene and Its Derivatives: An Experimentalist’s Perspective

  • Chapter
  • First Online:
Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE

Abstract

Carbon produces a wealth of different materials ranging from organic molecules to diamond crystals. One common challenge for the synthesis, application, and understanding of these materials is their characterization.

Graphene, a monoatomic layer of graphite, exemplifies the achievable diversity in properties of carbon materials and can serve as a model system for the analysis of complex molecules. Modifications, such as addition of heteroatoms, presence of edges, or interaction with adsorbates, significantly modify fundamental properties of graphene and allow inference to structure-property relations.

This contribution will demonstrate the ideal suitability of optical analysis techniques to provide complementary information on thus modified graphene. Even subtle changes in the mechanical, electronic, and chemical structure can be characterized by widely available and nondestructive optical spectroscopy methods.

We first provide an introduction of the available optical characterization techniques. Then, the ability of those techniques to elucidate changes of mechanical, electronic, and chemical properties of graphene will be described. To satisfy requirements from experimentalists, emphasis will be put on ease of access and quantitative relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Kotha, K. Lahiri, D. Kashinath, Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 58, 9633–9695 (2002)

    Article  Google Scholar 

  2. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012)

    Article  Google Scholar 

  3. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)

    Article  Google Scholar 

  4. J.M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M.G. Spencer, D. Veksler, Y. Chen, Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008)

    Article  Google Scholar 

  5. V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010)

    Article  Google Scholar 

  6. Z. Shou-En, Y. Shengjun, G.C.A.M. Janssen, Optical transmittance of multilayer graphene. EPL (Europhys Lett.) 108, 17007 (2014)

    Article  Google Scholar 

  7. H. Yan, F. Xia, W. Zhu, M. Freitag, C. Dimitrakopoulos, A.A. Bol, G. Tulevski, P. Avouris, Infrared spectroscopy of wafer-scale graphene. ACS Nano 5, 9854–9860 (2011)

    Article  Google Scholar 

  8. K.F. Mak, F.H. da Jornada, K. He, J. Deslippe, N. Petrone, J. Hone, J. Shan, S.G. Louie, T.F. Heinz, Tuning many-body interactions in graphene: the effects of doping on excitons and carrier lifetimes. Phys. Rev. Lett. 112, 207401 (2014)

    Article  Google Scholar 

  9. A. Matković, M. Chhikara, M. Milićević, U. Ralević, B. Vasić, D. Jovanović, M.R. Belić, G. Bratina, R. Gajić, Influence of a gold substrate on the optical properties of graphene. J. Appl. Phys. 117, 015305 (2015)

    Article  Google Scholar 

  10. C. Lee, N. Leconte, J. Kim, D. Cho, I.-W. Lyo, E.J. Choi, Optical spectroscopy study on the effect of hydrogen adsorption on graphene. Carbon 103, 109–114 (2016)

    Article  Google Scholar 

  11. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Article  Google Scholar 

  12. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat Nano 3, 101–105 (2008)

    Article  Google Scholar 

  13. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)

    Article  Google Scholar 

  14. N. Kurantowicz, E. Sawosz, S. Jaworski, M. Kutwin, B. Strojny, M. Wierzbicki, J. Szeliga, A. Hotowy, L. Lipińska, R. Koziński, J. Jagiełło, A. Chwalibog, Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res. Lett. 10, 1–12 (2015)

    Article  Google Scholar 

  15. P. Larkin, Chapter 3: Instrumentation and sampling methods, in Infrared and Raman Spectroscopy, (Elsevier, Oxford, 2011), pp. 27–54

    Chapter  Google Scholar 

  16. H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3, 2653–2659 (2009)

    Article  Google Scholar 

  17. J. O’reilly, R. Mosher, Functional groups in carbon black by FTIR spectroscopy. Carbon 21, 47–51 (1983)

    Article  Google Scholar 

  18. C. Hontoria-Lucas, A.J. López-Peinado, J.D.D. López-González, M.L. Rojas-Cervantes, R.M. Martín-Aranda, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33, 1585–1592 (1995)

    Article  Google Scholar 

  19. C. Zhang, D.M. Dabbs, L.-M. Liu, I.A. Aksay, R. Car, A. Selloni, Combined effects of functional groups, lattice defects, and edges in the infrared spectra of graphene oxide. J. Phys. Chem. C 119, 18167–18176 (2015)

    Article  Google Scholar 

  20. A. Kaniyoor, T.T. Baby, S. Ramaprabhu, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J. Mater. Chem. 20, 8467–8469 (2010)

    Article  Google Scholar 

  21. S. Eigler, C. Dotzer, A. Hirsch, M. Enzelberger, P. Müller, Formation and decomposition of CO2 intercalated graphene oxide. Chem. Mater. 24, 1276–1282 (2012)

    Article  Google Scholar 

  22. X. Wang, W. Wang, Y. Liu, M. Ren, H. Xiao, X. Liu, Characterization of conformation and locations of C–F bonds in graphene derivative by polarized ATR-FTIR. Anal. Chem. 88, 3926–3934 (2016)

    Article  Google Scholar 

  23. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)

    Article  Google Scholar 

  24. S. Konwer, J.P. Gogoi, A. Kalita, S.K. Dolui, Synthesis of expanded graphite filled polyaniline composites and evaluation of their electrical and electrochemical properties. J. Mater. Sci. Mater. Electron. 22, 1154–1161 (2011)

    Article  Google Scholar 

  25. I. Milosevic, N. Kepcija, E. Dobardzic, M. Mohr, J. Maultzsch, C. Thomsen, M. Damnjanovic, Symmetry-based analysis of the electron-phonon interaction in graphene. Physica Status Solidi B-Basic Solid State Phys. 246, 2606–2609 (2009)

    Article  Google Scholar 

  26. S. Reich, C. Thomsen, Raman spectroscopy of graphite. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 362, 2271–2288 (2004)

    Article  Google Scholar 

  27. J.F. Rodriguez-Nieva, E.B. Barros, R. Saito, M.S. Dresselhaus, Disorder-induced double resonant Raman process in graphene. Phys. Rev. B 90, 235410 (2014)

    Article  Google Scholar 

  28. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  Google Scholar 

  29. F. Schedin, E. Lidorikis, A. Lombardo, V.G. Kravets, A.K. Geim, A.N. Grigorenko, K.S. Novoselov, A.C. Ferrari, Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010)

    Article  Google Scholar 

  30. D.Y. Joh, L.H. Herman, S.-Y. Ju, J. Kinder, M.A. Segal, J.N. Johnson, G.K.L. Chan, J. Park, On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 11, 1–7 (2011)

    Article  Google Scholar 

  31. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. Novoselov, A. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7, 2711–2717 (2007)

    Article  Google Scholar 

  32. Z. Ni, H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, Z. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)

    Article  Google Scholar 

  33. L. Gao, W. Ren, F. Li, H.-M. Cheng, Total color difference for rapid and accurate identification of graphene. ACS Nano 2, 1625–1633 (2008)

    Article  Google Scholar 

  34. J. Kim, L.J. Cote, F. Kim, J.X. Huang, Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 132, 260–267 (2010)

    Article  Google Scholar 

  35. J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, Femtosecond pump-probe spectroscopy of graphene oxide in water. J. Phys. D-Appl. Phys. 47, 173106 (2014)

    Google Scholar 

  36. C. Schriever, S. Lochbrunner, E. Riedle, D.J. Nesbitt, Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase. Rev. Sci. Instrum. 79, 013107 (2008)

    Article  Google Scholar 

  37. D.J. Renteria, L.D. Nika, A.A. Balandin, Graphene thermal properties: applications in thermal management and energy storage. Appl. Sci. 4, 525–547 (2014)

    Article  Google Scholar 

  38. N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014)

    Article  Google Scholar 

  39. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  Google Scholar 

  40. L. Lindsay, W. Li, J. Carrete, N. Mingo, D.A. Broido, T.L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 89, 155426 (2014)

    Article  Google Scholar 

  41. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008)

    Article  Google Scholar 

  42. T.G.A. Verhagen, K. Drogowska, M. Kalbac, J. Vejpravova, Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B 92, 125437 (2015)

    Article  Google Scholar 

  43. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)

    Article  Google Scholar 

  44. J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012)

    Article  Google Scholar 

  45. M. Bruna, A.K. Ott, M. Ijas, D. Yoon, U. Sassi, A.C. Ferrari, Doping dependence of the Raman spectrum of defected graphene. ACS Nano 8, 7432–7441 (2014)

    Article  Google Scholar 

  46. Y.F. Hao, Y.Y. Wang, L. Wang, Z.H. Ni, Z.Q. Wang, R. Wang, C.K. Koo, Z.X. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6, 195–200 (2010)

    Article  Google Scholar 

  47. K.F. Mak, L. Ju, F. Wang, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)

    Article  Google Scholar 

  48. C.W. Luo, P.S. Tseng, H.J. Chen, K.H. Wu, L.J. Li, Dirac fermion relaxation and energy loss rate near the Fermi surface in monolayer and multilayer graphene. Nanoscale 6, 8575–8578 (2014)

    Article  Google Scholar 

  49. E. del Corro, L. Kavan, M. Kalbac, O. Frank, Strain assessment in graphene through the Raman 2D’ mode. J. Phys. Chem. C 119, 25651–25656 (2015)

    Article  Google Scholar 

  50. N. Ferralis, Probing mechanical properties of graphene with Raman spectroscopy. J. Mater. Sci. 45, 5135–5149 (2010)

    Article  Google Scholar 

  51. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B. 79 (2009)

    Google Scholar 

  52. C.W. Wang, M.D. Frogley, G. Cinque, L.Q. Liu, A.H. Barber, Molecular force transfer mechanisms in graphene oxide paper evaluated using atomic force microscopy and in situ synchrotron micro FT-IR spectroscopy. Nanoscale 6, 14404–14411 (2014)

    Article  Google Scholar 

  53. B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the $K$ point. Phys. Rev. B 74, 075404 (2006)

    Article  Google Scholar 

  54. J.R. Kyle, A. Guvenc, W. Wang, M. Ghazinejad, J. Lin, S. Guo, C.S. Ozkan, M. Ozkan, Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets. Small 7, 2599–2606 (2011)

    Article  Google Scholar 

  55. W. Li, S. Moon, M. Wojcik, K. Xu, Direct optical visualization of graphene and its nanoscale defects on transparent substrates. Nano Lett. 16, 5027–5031 (2016)

    Article  Google Scholar 

  56. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  57. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, Effects of layer stacking on the combination Raman modes in graphene. ACS Nano 5, 1594–1599 (2011)

    Article  Google Scholar 

  58. C. Cong, T. Yu, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Second-order overtone and combination Raman modes of graphene layers in the range of 1690−2150 cm−1. ACS Nano 5, 1600–1605 (2011)

    Article  Google Scholar 

  59. J. dos Santos, N.M.R. Peres, A.H. Castro, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 4 (2007)

    Google Scholar 

  60. K. Kim, S. Coh, L.Z. Tan, W. Regan, J.M. Yuk, E. Chatterjee, M. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 108, 246103 (2012)

    Article  Google Scholar 

  61. V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cançado, C.A. Achete, A. Jorio, Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011)

    Article  Google Scholar 

  62. R.W. Havener, H. Zhuang, L. Brown, R.G. Hennig, J. Park, Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 12, 3162–3167 (2012)

    Article  Google Scholar 

  63. J.-B. Wu, X. Zhang, M. Ijäs, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, P.-H. Tan, Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 5309 (2014)

    Article  Google Scholar 

  64. C.J. Tabert, E.J. Nicol, Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402 (2013)

    Article  Google Scholar 

  65. A.A. Avetisyan, B. Partoens, F.M. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010)

    Article  Google Scholar 

  66. C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011)

    Article  Google Scholar 

  67. C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Raman characterization of ABA-and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)

    Article  Google Scholar 

  68. K.F. Mak, J. Shan, T.F. Heinz, Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010)

    Article  Google Scholar 

  69. M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010)

    Article  Google Scholar 

  70. L.G. Cancado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)

    Article  Google Scholar 

  71. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012)

    Article  Google Scholar 

  72. R. Beams, L.G. Cancado, L. Novotny, Raman characterization of defects and dopants in graphene. J. Phys.Condens. Matter 27, 083002 (2015)

    Article  Google Scholar 

  73. A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Report. 6, 19491 (2016)

    Google Scholar 

  74. B. Li, T. He, Z. Wang, Z. Cheng, Y. Liu, T. Chen, W. Lai, X. Wang, X. Liu, Chemical reactivity of C-F bonds attached to graphene with diamines depending on their nature and location. Phys. Chem. Chem. Phys. 18, 17495–17505 (2016)

    Article  Google Scholar 

  75. Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016)

    Article  Google Scholar 

  76. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010)

    Article  Google Scholar 

  77. L. Cao, M.J. Meziani, S. Sahu, Y.P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171–180 (2013)

    Article  Google Scholar 

  78. S.K. Pal, Versatile photoluminescence from graphene and its derivatives. Carbon 88, 86–112 (2015)

    Article  Google Scholar 

  79. C. Galande, A.D. Mohite, A.V. Naumov, W. Gao, L.J. Ci, A. Ajayan, H. Gao, A. Srivastava, R.B. Weisman, P.M. Ajayan, Quasi-molecular fluorescence from graphene oxide. Sci. Report. 1 (2011)

    Google Scholar 

  80. C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M.W. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C.W. Chen, Tunable photoluminescence from graphene oxide. Angew. Chem.Int. Ed. 51, 6662–6666 (2012)

    Article  Google Scholar 

  81. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010)

    Article  Google Scholar 

  82. J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005)

    Article  Google Scholar 

  83. S. Kim, D. Hee Shin, C.O. Kim, S. Seok Kang, S. Sin Joo, S.-H. Choi, S. Won Hwang, C. Sone, Size-dependence of Raman scattering from graphene quantum dots: interplay between shape and thickness. Appl. Phys. Lett. 102, 053108 (2013)

    Article  Google Scholar 

  84. S. Ryu, J. Maultzsch, M.Y. Han, P. Kim, L.E. Brus, Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 5, 4123–4130 (2011)

    Article  Google Scholar 

  85. Z.Q. Luo, T. Yu, Z.H. Ni, S.H. Lim, H.L. Hu, J.Z. Shang, L. Liu, Z.X. Shen, J.Y. Lin, Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy. J. Phys. Chem. C 115, 1422–1427 (2011)

    Article  Google Scholar 

  86. I.A. Verzhbitskiy, M. De Corato, A. Ruini, E. Molinari, A. Narita, Y. Hu, M.G. Schwab, M. Bruna, D. Yoon, S. Milana, X. Feng, K. Mullen, A.C. Ferrari, C. Casiraghi, D. Prezzi, Raman fingerprints of atomically precise graphene nanoribbons. Nano Lett. 16, 3442–3447 (2016)

    Article  Google Scholar 

  87. J.Z. Shang, L. Ma, J.W. Li, W. Ai, T. Yu, G.G. Gurzadyan, The origin of fluorescence from graphene oxide. Sci. Report. 2, 792 (2012)

    Article  Google Scholar 

  88. J.A. Yan, M.Y. Chou, Oxidation functional groups on graphene: structural and electronic properties. Phys. Rev. B. 82 (2010)

    Google Scholar 

  89. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)

    Article  Google Scholar 

  90. R.R. Hartmann, J. Kono, M.E. Portnoi, Terahertz science and technology of carbon nanomaterials. Nanotechnology 25, 322001 (2014)

    Article  Google Scholar 

  91. D. Sun, C. Divin, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010)

    Article  Google Scholar 

  92. G.X. Wang, B. Wang, J. Park, Y. Wang, B. Sun, J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009)

    Article  Google Scholar 

  93. D.R. Lenski, M.S. Fuhrer, Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition. J. Appl. Phys. 110, 013720–013720-4 (2011)

    Article  Google Scholar 

  94. R.W. Havener, C.J. Kim, L. Brown, J.W. Kevek, J.D. Sleppy, P.L. McEuen, J. Park, Hyperspectral imaging of structure and composition in atomically thin heterostructures. Nano Lett. 13, 3942–3946 (2013)

    Article  Google Scholar 

  95. M. Hofmann, Y.P. Hsieh, K.W. Chang, H.G. Tsai, T.T. Chen, Dopant morphology as the factor limiting graphene conductivity. Sci. Report. 5, 17393 (2015)

    Google Scholar 

  96. A. Bosca, J. Pedros, J. Martinez, T. Palacios, F. Calle, Automatic graphene transfer system for improved material quality and efficiency. Sci. Report. 6, 21676 (2016)

    Google Scholar 

  97. N.E. Leadbeater, R.J. Smith, Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy. Org. Lett. 8, 4588–4591 (2006)

    Article  Google Scholar 

  98. J.R. Schmink, J.L. Holcomb, N.E. Leadbeater, Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations. Chem. Eur. J. 14, 9943–9950 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nguyen, DT., Hsieh, YP., Hofmann, M. (2017). Optical Characterization of Graphene and Its Derivatives: An Experimentalist’s Perspective. In: Kaneko, S., et al. Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE. Springer, Cham. https://doi.org/10.1007/978-3-319-61651-3_2

Download citation

Publish with us

Policies and ethics