Skip to main content

Role of Transforming Growth Factor Beta Family in Angiogenesis

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

  • 923 Accesses

Abstract

Transforming growth factor-beta (TGFβ) is a pleiotropic factor that plays pivotal roles in both vasculogenesis and angiogenesis, and thus is indispensable for development and homeostasis of the vascular system. TGFβ drives vascular responses via its binding to a TGFβ receptor complex formed by type I and type II receptors, as well a type III co-receptors present on both endothelial and mural cells. Signaling by these receptors is context dependent and tightly regulated, particularly on cultured endothelial cells, where TGFβ can either promote or suppress endothelial migration, proliferation, permeability and sprouting. These, together with evidence obtained from knock-out animals for different TGFβ receptor types, and genetic studies in humans linking mutations in TGFβ signaling components to cardiovascular syndromes, suggest that TGFβ is a central mediator of angiogenesis, where it may play contrasting roles depending on the stage of the process. This review presents an overview of knowledge accumulated to date on TGFβ’s role in angiogenesis as well as vascular biology and vascular disease, and discusses potential applications of this knowledge to the treatment of angiogenesis-dependent diseases such as cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43(2):97–110. doi:10.1136/jmg.2005.030833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agardh CD, Agardh E, Hultberg B, Ahren B (2000) Long-standing hyperglycemia in C57BL/6J mice does not affect retinal glutathione levels or endothelial/pericyte ratio in retinal capillaries. J Diabetes Complicat 14(3):146–153

    Article  CAS  PubMed  Google Scholar 

  3. Aki S, Yoshioka K, Okamoto Y, Takuwa N, Takuwa Y (2015) Phosphatidylinositol 3-kinase class II alpha-isoform PI3K-C2alpha is required for transforming growth factor beta-induced Smad signaling in endothelial cells. J Biol Chem 290(10):6086–6105. doi:10.1074/jbc.M114.601484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86(12):4544–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ardelean DS, Letarte M (2015) Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia. Front Genet 6:35. doi:10.3389/fgene.2015.00035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Awwad K, Hu J, Shi L, Mangels N, Abdel Malik R, Zippel N, Fisslthaler B, Fleming I (2015) Role of secreted modular calcium-binding protein 1 (SMOC1) in transforming growth factor beta signalling and angiogenesis. Cardiovasc Res 106(2):284–294. doi:10.1093/cvr/cvv098

    Article  CAS  PubMed  Google Scholar 

  7. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275(47):36803–36810. doi:10.1074/jbc.M005912200

    Article  CAS  PubMed  Google Scholar 

  8. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594

    Article  CAS  PubMed  Google Scholar 

  9. Bayrak-Toydemir P, McDonald J, Akarsu N, Toydemir RM, Calderon F, Tuncali T, Mao R (2006) A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A 140(20):2155–2162. doi:10.1002/ajmg.a.31450

    Article  PubMed  Google Scholar 

  10. Beiter K, Hiendlmeyer E, Brabletz T, Hlubek F, Haynl A, Knoll C, Kirchner T, Jung A (2005) beta-Catenin regulates the expression of tenascin-C in human colorectal tumors. Oncogene 24(55):8200–8204. doi:10.1038/sj.onc.1208960. 1208960 [pii]

    CAS  PubMed  Google Scholar 

  11. Benzinou M, Clermont FF, Letteboer TG, Kim JH, Espejel S, Harradine KA, Arbelaez J, Luu MT, Roy R, Quigley D, Higgins MN, Zaid M, Aouizerat BE, van Amstel JK, Giraud S, Dupuis-Girod S, Lesca G, Plauchu H, Hughes CC, Westermann CJ, Akhurst RJ (2012) Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun 3:616. doi:10.1038/ncomms1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Birukova AA, Adyshev D, Gorshkov B, Birukov KG, Verin AD (2005) ALK5 and Smad4 are involved in TGF-beta1-induced pulmonary endothelial permeability. FEBS Lett 579(18):4031–4037. doi:10.1016/j.febslet.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  13. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584. doi:10.1002/jcp.20311

    Article  CAS  PubMed  Google Scholar 

  14. Blobe GC, Schiemann WP, Pepin MC, Beauchemin M, Moustakas A, Lodish HF, O'Connor-McCourt MD (2001) Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling. J Biol Chem 276(27):24627–24637. doi:10.1074/jbc.M100188200

    Article  CAS  PubMed  Google Scholar 

  15. Brown CB, Boyer AS, Runyan RB, Barnett JV (1999) Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283(5410):2080–2082

    Article  CAS  PubMed  Google Scholar 

  16. Cao S, Yaqoob U, Das A, Shergill U, Jagavelu K, Huebert RC, Routray C, Abdelmoneim S, Vasdev M, Leof E, Charlton M, Watts RJ, Mukhopadhyay D, Shah VH (2010) Neuropilin-1 promotes cirrhosis of the rodent and human liver by enhancing PDGF/TGF-beta signaling in hepatic stellate cells. J Clin Invest 120(7):2379–2394. doi:10.1172/JCI41203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carvalho RL, Jonker L, Goumans MJ, Larsson J, Bouwman P, Karlsson S, Dijke PT, Arthur HM, Mummery CL (2004) Defective paracrine signalling by TGFbeta in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Dev 131(24):6237–6247. doi:10.1242/dev.01529

    Article  CAS  Google Scholar 

  18. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286(34):30034–30046. doi:10.1074/jbc.M111.260133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chaudhary A, Hilton MB, Seaman S, Haines DC, Stevenson S, Lemotte PK, Tschantz WR, Zhang XM, Saha S, Fleming T, St Croix B (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21(2):212–226. doi:10.1016/j.ccr.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267(27):19027–19030

    CAS  PubMed  Google Scholar 

  21. Choi HJ, Zhang H, Park H, Choi KS, Lee HW, Agrawal V, Kim YM, Kwon YG (2015) Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun 6:6943. doi:10.1038/ncomms7943

    Article  CAS  PubMed  Google Scholar 

  22. Cole SG, Begbie ME, Wallace GM, Shovlin CL (2005) A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 42(7):577–582. doi:10.1136/jmg.2004.028712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C, Vary CP (2004) Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279(26):27440–27449. doi:10.1074/jbc.M312561200

    Article  CAS  PubMed  Google Scholar 

  24. Cunha SI, Pietras K (2011) ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117(26):6999–7006. doi:10.1182/blood-2011-01-330142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(1):85–100. doi:10.1084/jem.20091309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Darland DC, D'Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4(1):11–20

    Article  CAS  PubMed  Google Scholar 

  27. David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489. doi:10.1002/jcp.21126

    Article  CAS  PubMed  Google Scholar 

  28. Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I (2005) Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 95(5):918–931. doi:10.1002/jcb.20458

    Article  CAS  PubMed  Google Scholar 

  29. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584. doi:10.1038/nature02006

    Article  CAS  PubMed  Google Scholar 

  30. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606. doi:10.1016/j.yjmcc.2010.10.033

    Article  CAS  PubMed  Google Scholar 

  31. Doerr M, Morrison J, Bergeron L, Coomber BL, Viloria-Petit A (2016) Differential effect of hypoxia on early endothelial-mesenchymal transition response to transforming growth beta isoforms 1 and 2. Microvasc Res 108:48–63. doi:10.1016/j.mvr.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  32. Duwel A, Eleno N, Jerkic M, Arevalo M, Bolanos JP, Bernabeu C, Lopez-Novoa JM (2007) Reduced tumor growth and angiogenesis in endoglin-haploinsufficient mice. Tumour Biol J Int Soc Oncodevelopmental Biol Med 28(1):1–8. doi:10.1159/000097040

    Google Scholar 

  33. Edlund S, Landstrom M, Heldin CH, Aspenstrom P (2002) Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13(3):902–914. doi:10.1091/mbc.01-08-0398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eleftheriou NM, Sjolund J, Bocci M, Cortez E, Lee SJ, Cunha SI, Pietras K (2016) Compound genetically engineered mouse models of cancer reveal dual targeting of ALK1 and endoglin as a synergistic opportunity to impinge on angiogenic TGF-beta signaling. Oncotarget 7(51):84314–84325. doi:10.18632/oncotarget.12604

    PubMed  PubMed Central  Google Scholar 

  35. Engel ME, McDonnell MA, Law BK, Moses HL (1999) Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274(52):37413–37420

    Article  CAS  PubMed  Google Scholar 

  36. Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, Lopez-Casillas F (2001) Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 276(18):14588–14596. doi:10.1074/jbc.M008866200

    Article  CAS  PubMed  Google Scholar 

  37. Esser S, Lampugnani MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    CAS  PubMed  Google Scholar 

  38. Farnworth PG, Wang Y, Escalona R, Leembruggen P, Ooi GT, Findlay JK (2007) Transforming growth factor-beta blocks inhibin binding to different target cell types in a context-dependent manner through dual mechanisms involving betaglycan. Endocrinology 148(11):5355–5368. doi:10.1210/en.2007-0155

    Article  CAS  PubMed  Google Scholar 

  39. Ferrari G, Pintucci G, Seghezzi G, Hyman K, Galloway AC, Mignatti P (2006) VEGF, a prosurvival factor, acts in concert with TGF-beta1 to induce endothelial cell apoptosis. Proc Natl Acad Sci U S A 103(46):17260–17265. doi:10.1073/pnas.0605556103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrari G, Terushkin V, Wolff MJ, Zhang X, Valacca C, Poggio P, Pintucci G, Mignatti P (2012) TGF-beta1 induces endothelial cell apoptosis by shifting VEGF activation of p38MAPK from the prosurvival p38beta to proapoptotic p38alpha. Molec Cancer Res MCR 10(5):605–614. doi:10.1158/1541-7786. MCR-11-0507

    Article  CAS  Google Scholar 

  41. Folkman J (2001) Angiogenesis-dependent diseases. Semin Oncol 28(6):536–542. doi:S0093775401002640[pii]

    Google Scholar 

  42. Franses JW, Edelman ER (2011) The evolution of endothelial regulatory paradigms in cancer biology and vascular repair. Cancer Res 71(24):7339–7344. doi:10.1158/0008-5472.CAN-11-1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638. doi:10.1161/ATVBAHA.107.161521

    Article  CAS  PubMed  Google Scholar 

  44. Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67(8):3752–3758. doi:10.1158/0008-5472.CAN-06-3851

    Article  CAS  PubMed  Google Scholar 

  45. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, Mitchell G, Drouin E, Westermann CJ, Marchuk DA (2004) A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363(9412):852–859. doi:10.1016/S0140-6736(04)15732-2

    Article  CAS  PubMed  Google Scholar 

  46. Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organ 4(4):241–246

    Google Scholar 

  47. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. doi:10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gilbert RWD, Vickaryous M, Viloria-Petit AM (2016) Signalling by transforming growth factor beta isoforms in wound healing and tissue regeneration. J Dev Biol 4(21):1–21

    Google Scholar 

  49. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782(4):197–228. doi:10.1016/j.bbadis.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  50. Gougos A, Letarte M (1990) Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem 265(15):8361–8364

    CAS  PubMed  Google Scholar 

  51. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753. doi:10.1093/emboj/21.7.1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12(4):817–828

    Article  CAS  PubMed  Google Scholar 

  53. Goumans MJ, Liu Z, ten Dijke P (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19(1):116–127. doi:10.1038/cr.2008.326

    Article  CAS  PubMed  Google Scholar 

  54. Groppa E, Brkic S, Bovo E, Reginato S, Sacchi V, Di Maggio N, Muraro MG, Calabrese D, Heberer M, Gianni-Barrera R, Banfi A (2015) VEGF dose regulates vascular stabilization through Semaphorin3A and the Neuropilin-1+ monocyte/TGF-beta1 paracrine axis. EMBO Mol Med 7(10):1366–1384. doi:10.15252/emmm.201405003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo B, Slevin M, Li C, Parameshwar S, Liu D, Kumar P, Bernabeu C, Kumar S (2004) CD105 inhibits transforming growth factor-beta-Smad3 signalling. Anticancer Res 24(3a):1337–1345

    CAS  PubMed  Google Scholar 

  56. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J clini oncol Off J Am Soc of Clini Oncol 23(5):1011–1027. doi:10.1200/JCO.2005.06.081

    Article  CAS  Google Scholar 

  57. Hirschi KK, Burt JM, Hirschi KD, Dai C (2003) Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ Res 93(5):429–437. doi:10.1161/01.RES.0000091259.84556.D5

    Article  CAS  PubMed  Google Scholar 

  58. Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652. doi:10.1161/CIRCRESAHA.107.167171

    Article  CAS  PubMed  Google Scholar 

  59. Ichijo T, Voutetakis A, Cotrim AP, Bhattachryya N, Fujii M, Chrousos GP, Kino T (2005) The Smad6-histone deacetylase 3 complex silences the transcriptional activity of the glucocorticoid receptor: potential clinical implications. J Biol Chem 280(51):42067–42077. doi:10.1074/jbc.M509338200

    Article  CAS  PubMed  Google Scholar 

  60. Jadrich JL, O'Connor MB, Coucouvanis E (2006) The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development 133(8):1529–1541. doi:10.1242/dev.02333

    Article  CAS  PubMed  Google Scholar 

  61. Jayaraman L, Massague J (2000) Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem 275(52):40710–40717. doi:10.1074/jbc.M005799200

    Article  CAS  PubMed  Google Scholar 

  62. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195. doi:10.1038/ng0696-189

    Article  CAS  PubMed  Google Scholar 

  63. Jonker L (2014) TGF-beta & BMP receptors endoglin and ALK1: overview of their functional role and status as antiangiogenic targets. Microcirculation 21(2):93–103. doi:10.1111/micc.12099

    Article  CAS  PubMed  Google Scholar 

  64. Jonker L, Arthur HM (2002) Endoglin expression in early development is associated with vasculogenesis and angiogenesis. Mech Dev 110(1–2):193–196

    Article  CAS  PubMed  Google Scholar 

  65. Kaitu'u-Lino TJ, Palmer KR, Whitehead CL, Williams E, Lappas M, Tong S (2012) MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin. Am J Pathol 180(3):888–894. doi:10.1016/j.ajpath.2011.11.014

    Article  PubMed  CAS  Google Scholar 

  66. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6(6):1365–1375

    Article  CAS  PubMed  Google Scholar 

  67. Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC (2008) Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem 283(12):7628–7637. doi:10.1074/jbc.M704883200

    Article  CAS  PubMed  Google Scholar 

  68. Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, Imamura T, Miyazono K, Aburatani H (2009) Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Mol Cell Biol 29(1):172–186. doi:10.1128/MCB.01038-08

    Article  CAS  PubMed  Google Scholar 

  69. Koleva RI, Conley BA, Romero D, Riley KS, Marto JA, Lux A, Vary CP (2006) Endoglin structure and function: determinants of endoglin phosphorylation by transforming growth factor-beta receptors. J Biol Chem 281(35):25110–25123. doi:10.1074/jbc.M601288200

    Article  CAS  PubMed  Google Scholar 

  70. Kuczynski EA, Patten SG, Coomber BL (2011a) VEGFR2 expression and TGF-beta signaling in initial and recurrent high-grade human glioma. Oncology 81(2):126–134. doi:10.1159/000332849

    Article  CAS  PubMed  Google Scholar 

  71. Kuczynski EA, Viloria-Petit AM, Coomber BL (2011b) Colorectal carcinoma cell production of transforming growth factor beta decreases expression of endothelial cell vascular endothelial growth factor receptor 2. Cancer 117(24):5601–5611. doi:10.1002/cncr.26247

    Article  CAS  PubMed  Google Scholar 

  72. Kume T (2012) Ligand-dependent Notch signaling in vascular formation. Adv Exp Med Biol 727:210–222. doi:10.1007/978-1-4614-0899-4_16

    Article  CAS  PubMed  Google Scholar 

  73. Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A (2001) Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell 12(4):1079–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-beta and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28(4):734–742. doi:10.1002/stem.319

    Article  CAS  PubMed  Google Scholar 

  75. Lamarre J, Vasudevan J, Gonias SL (1994) Plasmin cleaves betaglycan and releases a 60 kDa transforming growth factor-beta complex from the cell surface. Biochem J 302(Pt 1):199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501. doi:10.1182/blood.V100.13.4495

    Article  CAS  PubMed  Google Scholar 

  77. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22(3):489–500. doi:10.1016/j.devcel.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R (1997) The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem 272(23):14850–14859

    Article  CAS  PubMed  Google Scholar 

  79. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018–4028. doi:10.1038/sj.emboj.7600386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65(3):599–608. doi:10.1016/j.cardiores.2004.10.036

    Article  CAS  PubMed  Google Scholar 

  81. Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, Bréant C, Mathivet T, Larrivée B, Thomas JL, Arthur HM, Westermann CJ, Disch F, Mager JJ, Snijder RJ, Eichmann A, Mummery CL (2010) Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 16(4):420–428. doi:10.1038/nm.2131

    Article  CAS  PubMed  Google Scholar 

  82. Lee NY, Blobe GC (2007) The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem 282(29):21507–21517. doi:10.1074/jbc.M700176200

    Article  CAS  PubMed  Google Scholar 

  83. Lee NY, Golzio C, Gatza CE, Sharma A, Katsanis N, Blobe GC (2012) Endoglin regulates PI3-kinase/Akt trafficking and signaling to alter endothelial capillary stability during angiogenesis. Mol Biol Cell 23(13):2412–2423. doi:10.1091/mbc.E11-12-0993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Letamendia A, Lastres P, Almendro N, Raab U, Buhring HJ, Kumar S, Bernabeu C (1998) Endoglin, a component of the TGF-beta receptor system, is a differentiation marker of human choriocarcinoma cells. International journal of cancer. J Int du cancer 76(4):541–546

    Article  CAS  Google Scholar 

  85. Letteboer TG, Mager JJ, Snijder RJ, Koeleman BP, Lindhout D, Ploos van Amstel JK, Westermann CJ (2006) Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet 43(4):371–377. doi:10.1136/jmg.2005.035451

    Article  CAS  PubMed  Google Scholar 

  86. Li C, Guo B, Ding S, Rius C, Langa C, Kumar P, Bernabeu C, Kumar S (2003a) TNF alpha down-regulates CD105 expression in vascular endothelial cells: a comparative study with TGF beta 1. Anticancer Res 23(2B):1189–1196

    CAS  PubMed  Google Scholar 

  87. Li C, Issa R, Kumar P, Hampson IN, Lopez-Novoa JM, Bernabeu C, Kumar S (2003b) CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci 116(Pt 13):2677–2685. doi:10.1242/jcs.00470

    Article  CAS  PubMed  Google Scholar 

  88. Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A, Wang Y, Yang X (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20(3):291–302. doi:10.1016/j.devcel.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  89. Liao JH, Chen JS, Chai MQ, Zhao S, Song JG (2001) The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes. Cell Res 11(2):89–94. doi:10.1038/sj.cr.7290072

    Article  CAS  PubMed  Google Scholar 

  90. Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z (2015) AMPK Inhibits the Stimulatory Effects of TGF-beta on Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 88(6):1062–1071. doi:10.1124/mol.115.099549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu Z, Kobayashi K, van Dinther M, van Heiningen SH, Valdimarsdottir G, van Laar T, Scharpfenecker M, Löwik CW, Goumans MJ, Ten Dijke P, Pardali E (2009) VEGF and inhibitors of TGFbeta type-I receptor kinase synergistically promote blood-vessel formation by inducing alpha5-integrin expression. J Cell Sci 122(Pt 18):3294–3302. doi:10.1242/jcs.048942

    Article  CAS  PubMed  Google Scholar 

  92. Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N (2013) IQGAP1 suppresses TbetaRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 123(3):1138–1156. doi:10.1172/JCI63836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Londesborough A, Vaahtomeri K, Tiainen M, Katajisto P, Ekman N, Vallenius T, Makela TP (2008) LKB1 in endothelial cells is required for angiogenesis and TGFbeta-mediated vascular smooth muscle cell recruitment. Development 135(13):2331–2338. doi:10.1242/dev.017038

    Article  CAS  PubMed  Google Scholar 

  94. Luo K, Lodish HF (1997) Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J 16(8):1970–1981. doi:10.1093/emboj/16.8.1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lupo G, Motta C, Salmeri M, Spina-Purrello V, Alberghina M, Anfuso CD (2014) An in vitro retinoblastoma human triple culture model of angiogenesis: a modulatory effect of TGF-beta. Cancer Lett 354(1):181–188. doi:10.1016/j.canlet.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  96. Ma J, Wang Q, Fei T, Han JD, Chen YG (2007) MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 109(3):987–994. doi:10.1182/blood-2006-07-036400

    Article  CAS  PubMed  Google Scholar 

  97. Mahmoud M, Upton PD, Arthur HM (2011) Angiogenesis regulation by TGFbeta signalling: clues from an inherited vascular disease. Biochem Soc Trans 39(6):1659–1666. doi:10.1042/BST20110664

    Article  CAS  PubMed  Google Scholar 

  98. Mallet C, Vittet D, Feige JJ, Bailly S (2006) TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem Cells 24(11):2420–2427. doi:10.1634/stemcells.2005-0494

    Article  CAS  PubMed  Google Scholar 

  99. Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230. doi:10.1016/j.cell.2008.07.001S0092-8674(08)00878-7. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, WC MK, Murrell J et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8(4):345–351. doi:10.1038/ng1294-345

    Article  CAS  PubMed  Google Scholar 

  101. van Meeteren LA, ten Dijke P (2012) Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res 347(1):177–186. doi:10.1007/s00441-011-1222-6

    Article  PubMed  CAS  Google Scholar 

  102. van Meeteren LA, Thorikay M, Bergqvist S, Pardali E, Gallo Stampino C, Hu-Lowe D, Goumans MJ, Ten Dijke P (2012) An anti-human ALK1 antibody attenuates BMP9 induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287(22):18551–18561. doi:10.1074/jbc. M111.338103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells Devoted Mol Cell Mech 7(12):1191–1204

    Article  CAS  Google Scholar 

  104. Mochizuki T, Miyazaki H, Hara T, Furuya T, Imamura T, Watabe T, Miyazono K (2004) Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. J Biol Chem 279(30):31568–31574. doi:10.1074/jbc. M313977200

    Article  CAS  PubMed  Google Scholar 

  105. Moren A, Ichijo H, Miyazono K (1992) Molecular cloning and characterization of the human and porcine transforming growth factor-beta type III receptors. Biochem Biophys Res Commun 189(1):356–362

    Article  CAS  PubMed  Google Scholar 

  106. Moren A, Raja E, Heldin CH, Moustakas A (2011) Negative regulation of TGFbeta signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem 286(1):341–353. doi:10.1074/jbc.M110.190660

    Article  CAS  PubMed  Google Scholar 

  107. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714. doi:10.1242/dev.030338. 136/22/3699 [pii]

    Article  CAS  PubMed  Google Scholar 

  108. Moustakas A, Pardali K, Gaal A, Heldin CH (2002) Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 82(1–2):85–91

    Article  CAS  PubMed  Google Scholar 

  109. Mustafa DA, Dekker LJ, Stingl C, Kremer A, Stoop M, Sillevis Smitt PA, Kros JM, Luider TM (2012) A proteome comparison between physiological angiogenesis and angiogenesis in glioblastoma. Molecular Cell Proteomics MCP 11(6):M111. doi:10.1074/mcp.M111.008466

    Article  PubMed  CAS  Google Scholar 

  110. Nie L, Lyros O, Medda R, Jovanovic N, Schmidt JL, Otterson MF, Johnson CP, Behmaram B, Shaker R, Rafiee P (2014) Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1beta and TGF-beta2. Am J Phys Cell Phys 307(9):C859–C877. doi:10.1152/ajpcell.00081.2014

    Article  CAS  Google Scholar 

  111. Nishishita T, Lin PC (2004) Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 91(3):584–593. doi:10.1002/jcb.10718

    Article  CAS  PubMed  Google Scholar 

  112. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97(6):2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ohashi K, Ouchi N, Higuchi A, Shaw RJ, Walsh K (2010) LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 285(29):22291–22298. doi:10.1074/jbc.M110.123794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Olsson N, Piek E, Sundstrom M, ten Dijke P, Nilsson G (2001) Transforming growth factor-beta-mediated mast cell migration depends on mitogen-activated protein kinase activity. Cell Signal 13(7):483–490

    Article  PubMed  Google Scholar 

  115. Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193(3):299–318. doi:10.1002/jcp.10170

    Article  CAS  PubMed  Google Scholar 

  116. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609. doi:10.1126/science.1105718

    Article  CAS  PubMed  Google Scholar 

  117. Pan CC, Bloodworth JC, Mythreye K, Lee NY (2012) Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation. Biochem Biophys Res Commun 424(3):620–623. doi:10.1016/j.bbrc.2012.06.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pardali E, ten Dijke P (2009) Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci J Virtual Libr 14:4848–4861

    Article  CAS  Google Scholar 

  119. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567. doi:10.1016/j.tcb.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  120. Patil AS, Sable RB, Kothari RM (2011) An update on transforming growth factor-beta (TGF-beta): sources, types, functions and clinical applicability for cartilage/bone healing. J Cell Physiol 226(12):3094–3103. doi:10.1002/jcp.22698

    Article  CAS  PubMed  Google Scholar 

  121. Pepper MS, Vassalli JD, Orci L, Montesano R (1993) Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp Cell Res 204(2):356–363. doi:10.1006/excr.1993.1043

    Article  CAS  PubMed  Google Scholar 

  122. Pomeraniec L, Hector-Greene M, Ehrlich M, Blobe GC, Henis YI (2015) Regulation of TGF-beta receptor hetero-oligomerization and signaling by endoglin. Mol Biol Cell 26(17):3117–3127. doi:10.1091/mbc.E15-02-0069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ravichandran KS (2001) Signaling via Shc family adapter proteins. Oncogene 20(44):6322–6330. doi:10.1038/sj.onc.1204776

    Article  CAS  PubMed  Google Scholar 

  124. Ray BN, Lee NY, How T, Blobe GC (2010) ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis 31(3):435–441. doi:10.1093/carcin/bgp327

    Article  CAS  PubMed  Google Scholar 

  125. del Re E, Babitt JL, Pirani A, Schneyer AL, Lin HY (2004) In the absence of type III receptor, the transforming growth factor (TGF)-beta type II-B receptor requires the type I receptor to bind TGF-beta2. J Biol Chem 279(21):22765–22772. doi:10.1074/jbc.M401350200

    Article  PubMed  CAS  Google Scholar 

  126. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55(3):261–268. doi:10.1387/ijdb.103167dr

    Article  CAS  PubMed  Google Scholar 

  127. Rivera LB, Brekken RA (2011) SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-beta1 activity. J Cell Biol 193(7):1305–1319. doi:10.1083/jcb.201011143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rossi E, Smadja DM, Boscolo E, Langa C, Arevalo MA, Pericacho M, Gamella-Pozuelo L, Kauskot A, Botella LM, Gaussem P, Bischoff, Lopez-Novoa JM, Bernabeu C (2016) Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol Life Sci 73(8):1715–1739. doi:10.1007/s00018-015-2099-4

    Article  CAS  PubMed  Google Scholar 

  129. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Löwik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972. doi:10.1242/jcs.002949

    Article  CAS  PubMed  Google Scholar 

  130. Scherner O, Meurer SK, Tihaa L, Gressner AM, Weiskirchen R (2007) Endoglin differentially modulates antagonistic transforming growth factor-beta1 and BMP-7 signaling. J Biol Chem 282(19):13934–13943. doi:10.1074/jbc.M611062200

    Article  CAS  PubMed  Google Scholar 

  131. Seon BK, Haba A, Matsuno F, Takahashi N, Tsujie M, She X, Harada N, Uneda S, Tsujie T, Toi H, Tsai H, Haruta Y (2011) Endoglin-targeted cancer therapy. Curr Drug Deliv 8(1):135–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  PubMed  Google Scholar 

  133. Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X (2004) GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 164(2):291–300. doi:10.1083/jcb.200307151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shi X, Chen F, Yu J, Xu Y, Zhang S, Chen YG, Fang X (2008) Study of interaction between Smad7 and DNA by single-molecule force spectroscopy. Biochem Biophys Res Commun 377(4):1284–1287. doi:10.1016/j.bbrc.2008.10.145

    Article  CAS  PubMed  Google Scholar 

  135. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19(22):2668–2681. doi:10.1101/gad.1360605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Shimizu F, Sano Y, Haruki H, Kanda T (2011) Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-beta and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia 54(6):1517–1526. doi:10.1007/s00125-011-2107-7

    Article  CAS  PubMed  Google Scholar 

  137. Slevin M, Krupinski J, Rovira N, Turu M, Luque A, Baldellou M, Sanfeliu C, de Vera N, Badimon L (2009) Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection. BMC Genomics 10:113. doi:10.1186/1471-2164-10-113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Stopa M, Anhuf D, Terstegen L, Gatsios P, Gressner AM, Dooley S (2000) Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. THE TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem 275(38):29308–29317. doi:10.1074/jbc.M003282200

    Article  CAS  PubMed  Google Scholar 

  139. Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10(8):923–934. doi:10.1038/ncb1752

    Article  CAS  PubMed  Google Scholar 

  140. Thalgott J, Dos-Santos-Luis D, Lebrin F (2015) Pericytes as targets in hereditary hemorrhagic telangiectasia. Front Genet 6:37. doi:10.3389/fgene.2015.00037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Tian M, Neil JR, Schiemann WP (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 23(6):951–962. doi:10.1016/j.cellsig.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  142. Torsney E, Charlton R, Parums D, Collis M, Arthur HM (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflammation Res Off J Eur Histamine Res Soc 51(9):464–470

    CAS  Google Scholar 

  143. Townsend TA, Wrana JL, Davis GE, Barnett JV (2008) Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem 283(20):13834–13841. doi:10.1074/jbc.M710607200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95(6):779–791

    Article  CAS  PubMed  Google Scholar 

  145. Van Geest RJ, Klaassen I, Vogels IM, Van Noorden CJ, Schlingemann RO (2010) Differential TGF-{beta} signaling in retinal vascular cells: a role in diabetic retinopathy? Invest Ophthalmol Vis Sci 51(4):1857–1865. doi:10.1167/iovs.09-4181

    Article  PubMed  Google Scholar 

  146. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, PA D’A, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649. doi:10.1038/nm1429

    Article  CAS  PubMed  Google Scholar 

  147. Viloria-Petit AM, Wrana JL (2010) The TGFbeta-Par6 polarity pathway: linking the Par complex to EMT and breast cancer progression. Cell Cycle 9(4):623–624

    Article  CAS  PubMed  Google Scholar 

  148. Wahl SM, Wen J, Moutsopoulos N (2006) TGF-beta: a mobile purveyor of immune privilege. Immunol Rev 213:213–227. doi:10.1111/j.1600-065X.2006.00437.x

    Article  CAS  PubMed  Google Scholar 

  149. Walshe TE, Saint-Geniez M, Maharaj AS, Sekiyama E, Maldonado AE, D'Amore PA (2009) TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS One 4(4):e5149. doi:10.1371/journal.pone.0005149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351. doi:10.1038/35085597

    Article  CAS  PubMed  Google Scholar 

  151. Wang L, Zeng H, Wang P, Soker S, Mukhopadhyay D (2003). Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J Biol Chem. 278(49):48848–48860. doi: 10.1074/jbc.M310047200 [pii].

  152. Warrington K, Hillarby MC, Li C, Letarte M, Kumar S (2005) Functional role of CD105 in TGF-beta1 signalling in murine and human endothelial cells. Anticancer Res 25(3B):1851–1864

    CAS  PubMed  Google Scholar 

  153. Watabe T, Nishihara A, Mishima K, Yamashita J, Shimizu K, Miyazawa K, Nishikawa S, Miyazono K (2003) TGF-beta receptor kinase inhibitor enhances growth and integrity of embryonic stem cell-derived endothelial cells. J Cell Biol 163(6):1303–1311. doi:10.1083/jcb.200305147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Welch-Reardon KM, Ehsan SM, Wang K, Wu N, Newman AC, Romero-Lopez M, Fong AH, George SC, Edwards RA, Hughes CC (2014) Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci 127(Pt 9):2017–2028. doi:10.1242/jcs.143420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Welch-Reardon KM, Wu N, Hughes CC (2015) A role for partial endothelial-mesenchymal transitions in angiogenesis? Arterioscler Thromb Vasc Biol 35(2):303–308. doi:10.1161/ATVBAHA.114.303220

    Article  CAS  PubMed  Google Scholar 

  156. Wong SH, Hamel L, Chevalier S, Philip A (2000) Endoglin expression on human microvascular endothelial cells association with betaglycan and formation of higher order complexes with TGF-beta signalling receptors. Eur J Biochem / FEBS 267(17):5550–5560

    Article  CAS  Google Scholar 

  157. Worthington JJ, Klementowicz JE, Travis MA (2011) TGFbeta: a sleeping giant awoken by integrins. Trends Biochem Sci 36(1):47–54. doi:10.1016/j.tibs.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  158. Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R, Maizel J, Chander PN, Goligorsky MS (2015) Curtailing endothelial TGF-beta signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 26(4):817–829. doi:10.1681/ASN.2013101137

    Article  CAS  PubMed  Google Scholar 

  159. Xiao Z, Watson N, Rodriguez C, Lodish HF (2001) Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals. J Biol Chem 276(42):39404–39410. doi:10.1074/jbc.M103117200

    Article  CAS  PubMed  Google Scholar 

  160. Xin C, Ren S, Kleuser B, Shabahang S, Eberhardt W, Radeke H, Schäfer-Korting M, Pfeilschifter J, Huwiler A (2004) Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem 279(34):35255–35262. doi:10.1074/jbc.M312091200

    Article  CAS  PubMed  Google Scholar 

  161. Xu G, Barrios-Rodiles M, Jerkic M, Turinsky AL, Nadon R, Vera S, Voulgaraki D, Wrana JL, Toporsian M, Letarte M (2014) Novel protein interactions with endoglin and activin receptor-like kinase 1: potential role in vascular networks. Mol Cell Proteomics 13(2):489–502. doi:10.1074/mcp.M113.033464

    Article  CAS  PubMed  Google Scholar 

  162. Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269(31):20172–20178

    CAS  PubMed  Google Scholar 

  163. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31(6):918–924. doi:10.1016/j.molcel.2008.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yan X, Liu Z, Chen Y (2009) Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin 41(4):263–272

    Article  CAS  PubMed  Google Scholar 

  165. Yi JY, Shin I, Arteaga CL (2005) Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem 280(11):10870–10876. doi:10.1074/jbc.M413223200

    Article  CAS  PubMed  Google Scholar 

  166. Yoshimatsu Y, Watabe T (2011) Roles of TGF-beta signals in endothelial-mesenchymal transition during cardiac fibrosis. Int J Inflamm 2011:724080. doi:10.4061/2011/724080

    Google Scholar 

  167. Young K, Tweedie E, Conley B, Ames J, FitzSimons M, Brooks P, Liaw L, Vary CP (2015) Bmp9 crosstalk with the hippo pathway regulates endothelial cell matricellular and chemokine responses. PLoS One 10(4):e0122892. doi:10.1371/journal.pone.0122892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 98(12):6686–6691. doi:10.1073/pnas.111614398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res. 19(1):128–139. doi:10.1038/cr.2008.328. cr2008328 [pii]

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alicia Viloria-Petit or Brenda L. Coomber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Viloria-Petit, A., Richard, A., Zours, S., Jarad, M., Coomber, B.L. (2017). Role of Transforming Growth Factor Beta Family in Angiogenesis. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_5

Download citation

Publish with us

Policies and ethics