Skip to main content

Angiogenesis and Prostate Cancer: Friends or Foes

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

  • 892 Accesses

Abstract

A key-hallmark of cancer is the promotion of angiogenesis. While there are currently no markers of the net angiogenic activity of prostate cancer (PCa) that can help investigators to design specific anti-angiogenic strategies, it is reasonable to assume that the quantification of various aspects of tumor vasculature may provide an indication of angiogenic activity. It has been ascertained that malignant tumors can generate their vasculature in seven distinct ways, including sprouting angiogenesis, vasculogenesis, intussusceptive angiogenesis, vascular co-option, mosaic vessels, vasculogenic mimicry and trans-differentiation of cancer stem-like cells into tumor endothelial cells. Here we briefly review these ways to get blood supply for the progression of PCa, its predictive and prognostic role and the actual discrepancies in the quantitative evaluation of neovascularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29. PubMed PMID: 22237781

    Article  PubMed  Google Scholar 

  2. Benazzi C, Al-Dissi A, Chau CH, Figg WD, Sarli G, de Oliveira JT et al (2014) Angiogenesis in spontaneous tumors and implications for comparative tumor biology. TheScientificWorldJOURNAL 2014:919570. PubMed PMID: 24563633. Pubmed Central PMCID: 3916025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grizzi F, Russo C, Colombo P, Franceschini B, Frezza EE, Cobos E et al (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 5:14. PubMed PMID: 15701176. Pubmed Central PMCID: 549205

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. PubMed PMID: 12778163

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. PubMed PMID: 21376230

    Article  CAS  PubMed  Google Scholar 

  6. Taverna G, Grizzi F, Colombo P, Graziotti P (2013) Is angiogenesis a hallmark of prostate cancer? Front Oncol 3:15. PubMed PMID: 23390615. Pubmed Central PMCID: 3565155

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang WQ, Liu L, Xu HX, Luo GP, Chen T, Wu CT et al (2013) Intratumoral alpha-SMA Enhances the Prognostic Potency of CD34 Associated with Maintenance of Microvessel Integrity in Hepatocellular Carcinoma and Pancreatic Cancer. PLoS One 8(8):e71189. PubMed PMID: 23940715. Pubmed Central PMCID: 3734294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288. PubMed PMID: 4332371. Pubmed Central PMCID: 2138906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. PubMed PMID: 4938153

    Article  CAS  PubMed  Google Scholar 

  10. Karlou M, Tzelepi V, Efstathiou E (2010) Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 7(9):494–509. PubMed PMID: 20818327

    Article  PubMed  Google Scholar 

  11. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351(3):250–259. PubMed PMID: 15254283

    Article  CAS  PubMed  Google Scholar 

  12. Russo G, Mischi M, Scheepens W, De la Rosette JJ, Wijkstra H (2012) Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 110(11 Pt C):E794–E808. PubMed PMID: 22958524

    Article  PubMed  Google Scholar 

  13. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H et al (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 95(16):9220–9225. PubMed PMID: 9689061. Pubmed Central PMCID: 21319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209. PubMed PMID: 12697739. Pubmed Central PMCID: 152929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Sotomayor MA, Perez-Guerrero C, Herrrera MD, Jimenez L, Marin R, Marhuenda E et al (2005) Improvement of age-related endothelial dysfunction by simvastatin: effect on NO and COX pathways. Br J Pharmacol 146(8):1130–1138. PubMed PMID: 16231003. Pubmed Central PMCID: 1751244

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J (2012) Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol 60(16):1455–1469. PubMed PMID: 22999723

    Article  CAS  PubMed  Google Scholar 

  17. Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4(9–10):342–359. PubMed PMID: 24349632. Pubmed Central PMCID: 3863344

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ma B, Wells A (2014) The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells. J Biol Chem 289(16):11153–11161. PubMed PMID: 24619413. Pubmed Central PMCID: 4036254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shtivelman E, Beer TM, Evans CP (2014) Molecular pathways and targets in prostate cancer. Oncotarget 5(17):7217–7259. PubMed PMID: 25277175. Pubmed Central PMCID: 4202120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Milone MR, Pucci B, Bruzzese F, Carbone C, Piro G, Costantini S et al (2013) Acquired resistance to zoledronic acid and the parallel acquisition of an aggressive phenotype are mediated by p38-MAP kinase activation in prostate cancer cells. Cell Death Dis 4:e641. PubMed PMID: 23703386. Pubmed Central PMCID: 3674372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Homrich M, Gotthard I, Wobst H, Diestel S (2015) Cell Adhesion Molecules and Ubiquitination-Functions and Significance. Biology 5(1):1. PubMed PMID: 26703751. Pubmed Central PMCID: 4810158

    Article  PubMed Central  Google Scholar 

  22. Burns FR, von Kannen S, Guy L, Raper JA, Kamholz J, Chang S (1991) DM-GRASP, a novel immunoglobulin superfamily axonal surface protein that supports neurite extension. Neuron 7(2):209–220. PubMed PMID: 1873027

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka H, Obata K (1984) Developmental changes in unique cell surface antigens of chick embryo spinal motoneurons and ganglion cells. Dev Biol 106(1):26–37. PubMed PMID: 6386573

    Article  CAS  PubMed  Google Scholar 

  24. Pourquie O, Coltey M, Thomas JL, Le Douarin NM (1990) A widely distributed antigen developmentally regulated in the nervous system. Development 109(4):743–752. PubMed PMID: 2226198

    CAS  PubMed  Google Scholar 

  25. Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181(6):2213–2220. PubMed PMID: 7760007. Pubmed Central PMCID: 2192054

    Article  CAS  PubMed  Google Scholar 

  26. Kubo T, Shimose S, Matsuo T, Sakai A, Ochi M (2008) Efficacy of a nitrogen-containing bisphosphonate, minodronate, in conjunction with a p38 mitogen activated protein kinase inhibitor or doxorubicin against malignant bone tumor cells. Cancer Chemother Pharmacol 62(1):111–116. PubMed PMID: 17874104

    Article  CAS  PubMed  Google Scholar 

  27. Rajashekhar G, Willuweit A, Patterson CE, Sun P, Hilbig A, Breier G et al (2006) Continuous endothelial cell activation increases angiogenesis: evidence for the direct role of endothelium linking angiogenesis and inflammation. J Vasc Res 43(2):193–204. PubMed PMID: 16410682

    Article  PubMed  Google Scholar 

  28. Lunter PC, van Kilsdonk JW, van Beek H, Cornelissen IM, Bergers M, Willems PH et al (2005) Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res 65(19):8801–8808. PubMed PMID: 16204050

    Article  CAS  PubMed  Google Scholar 

  29. Mandelbrot BB (1975) Stochastic models for the Earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc Natl Acad Sci U S A 72(10):3825–3828. PubMed PMID: 16578734. Pubmed Central PMCID: 433088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khandrika L, Lieberman R, Koul S, Kumar B, Maroni P, Chandhoke R et al (2009) Hypoxia-associated p38 mitogen-activated protein kinase-mediated androgen receptor activation and increased HIF-1alpha levels contribute to emergence of an aggressive phenotype in prostate cancer. Oncogene 28(9):1248–1260. PubMed PMID: 19151763. Pubmed Central PMCID: 2651999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi S, Kobayashi M, Wang J, Habelhah H, Okada F, Hamada J et al (2000) Activated leukocyte cell adhesion molecule (ALCAM) and annexin II are involved in the metastatic progression of tumor cells after chemotherapy with Adriamycin. Clin Exp Metastasis 18(1):45–50. PubMed PMID: 11206837

    Article  CAS  PubMed  Google Scholar 

  32. Morii T, Ohtsuka K, Ohnishi H, Mochizuki K, Satomi K (2010) Inhibition of heat-shock protein 27 expression eliminates drug resistance of osteosarcoma to zoledronic acid. Anticancer Res 30(9):3565–3571. PubMed PMID: 20944138

    CAS  PubMed  Google Scholar 

  33. Merrell MA, Wakchoure S, Lehenkari PP, Harris KW, Selander KS (2007) Inhibition of the mevalonate pathway and activation of p38 MAP kinase are independently regulated by nitrogen-containing bisphosphonates in breast cancer cells. Eur J Pharmacol 570(1–3):27–37. PubMed PMID: 17640631

    Article  CAS  PubMed  Google Scholar 

  34. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. PubMed PMID: 11001068

    Article  CAS  PubMed  Google Scholar 

  35. Kristiansen G, Pilarsky C, Wissmann C, Kaiser S, Bruemmendorf T, Roepcke S et al (2005) Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J Pathol 205(3):359–376. PubMed PMID: 15532095

    Article  CAS  PubMed  Google Scholar 

  36. Milosevic M, Chung P, Parker C, Bristow R, Toi A, Panzarella T et al (2007) Androgen withdrawal in patients reduces prostate cancer hypoxia: implications for disease progression and radiation response. Cancer Res 67(13):6022–6025. PubMed PMID: 17616657

    Article  CAS  PubMed  Google Scholar 

  37. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68(6):1777–1785. PubMed PMID: 18339858

    Article  CAS  PubMed  Google Scholar 

  38. McNeal JE (1969) Origin and development of carcinoma in the prostate. Cancer 23(1):24–34. PubMed PMID: 5763258

    Article  CAS  PubMed  Google Scholar 

  39. McNeal JE (1981) The zonal anatomy of the prostate. Prostate 2(1):35–49. PubMed PMID: 7279811

    Article  CAS  PubMed  Google Scholar 

  40. McNeal JE (1988) Normal histology of the prostate. Am J Surg Pathol 12(8):619–633. PubMed PMID: 2456702

    Article  CAS  PubMed  Google Scholar 

  41. Timms BG (2008) Prostate development: a historical perspective. Differentiation 76(6):565–577. PubMed PMID: 18462432

    Article  CAS  PubMed  Google Scholar 

  42. Cunha GR (2008) Mesenchymal-epithelial interactions: past, present, and future. Differentiation 76(6):578–586. PubMed PMID: 18557761

    Article  CAS  PubMed  Google Scholar 

  43. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ et al (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8(3):338–362. PubMed PMID: 3308446

    Article  CAS  PubMed  Google Scholar 

  44. Dome B, Hendrix MJ, Paku S, Tovari J, Timar J (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170(1):1–15. PubMed PMID: 17200177. Pubmed Central PMCID: 1762709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314(1):107–117. PubMed PMID: 14574551

    Article  PubMed  Google Scholar 

  46. Kurz H, Burri PH, Djonov VG (2003) Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci 18:65–70. PubMed PMID: 12644622

    PubMed  Google Scholar 

  47. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86(3):286–292. PubMed PMID: 10679480

    Article  CAS  PubMed  Google Scholar 

  48. Ribatti D, Djonov V (2012) Intussusceptive microvascular growth in tumors. Cancer Lett 316(2):126–131. PubMed PMID: 22197620

    Article  CAS  PubMed  Google Scholar 

  49. Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158(4):773–785. PubMed PMID: 12177047. Pubmed Central PMCID: 2174013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang K, Peng HL, Li LK (2012) Prognostic value of vascular endothelial growth factor expression in patients with prostate cancer: a systematic review with meta-analysis. Asian Pac J Cancer Prev 13(11):5665–5669. PubMed PMID: 23317235

    Article  PubMed  Google Scholar 

  51. Yang L, You S, Kumar V, Zhang C, Cao Y (2012) In vitro the behaviors of metastasis with suppression of VEGF in human bone metastatic LNCaP-derivative C4-2B prostate cancer cell line. J Exp Clin Cancer Res 31:40. PubMed PMID: 22549243. Pubmed Central PMCID: 3511813

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang S, Peng L, Tang Y, Zhang L, Guo W, Zou X et al (2013) Hypoxia of PC-3 prostate cancer cells enhances migration and vasculogenesis in vitro of bone marrow-derived endothelial progenitor cells by secretion of cytokines. Oncol Rep 29(6):2369–2377. PubMed PMID: 23546641

    Article  CAS  PubMed  Google Scholar 

  53. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 124(6):763–775. PubMed PMID: 23143192. Pubmed Central PMCID: 3508273

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thompson WD, Shiach KJ, Fraser RA, McIntosh LC, Simpson JG (1987) Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth. J Pathol 151(4):323–332. PubMed PMID: 2438394

    Article  CAS  PubMed  Google Scholar 

  55. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998. PubMed PMID: 10373119

    Article  CAS  PubMed  Google Scholar 

  56. Dome B, Paku S, Somlai B, Timar J (2002) Vascularization of cutaneous melanoma involves vessel co-option and has clinical significance. J Pathol 197(3):355–362. PubMed PMID: 12115882

    Article  PubMed  Google Scholar 

  57. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752. PubMed PMID: 10487832. Pubmed Central PMCID: 1866899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ (2012) Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 18(10):2726–2732. PubMed PMID: 22474319. Pubmed Central PMCID: 3354024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV et al (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181(4):1115–1125. PubMed PMID: 22944600. Pubmed Central PMCID: 4851740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuroda N (2014) Application of combined immunohistochemical panel of AMACR(P504S)/p63 cocktail, cytokeratin 5 and D2-40 to atypical glands in prostatic needle biopsy. Malays J Pathol 36(3):169–173

    CAS  PubMed  Google Scholar 

  61. Sharma N, Seftor RE, Seftor EA, Gruman LM, Heidger PM Jr, Cohen MB et al (2002) Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate 50(3):189–201. PubMed PMID: 11813211

    Article  PubMed  Google Scholar 

  62. Liu R, Yang K, Meng C, Zhang Z, Xu Y (2012) Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Ther 13(7):527–533. PubMed PMID: 22407030

    Article  CAS  PubMed  Google Scholar 

  63. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 94(12):883–893. PubMed PMID: 12072542

    Article  PubMed  Google Scholar 

  64. Erbersdobler A, Isbarn H, Dix K, Steiner I, Schlomm T, Mirlacher M et al (2010) Prognostic value of microvessel density in prostate cancer: a tissue microarray study. World J Urol 28(6):687–692. PubMed PMID: 19714336

    Article  PubMed  Google Scholar 

  65. Preusser M, Heinzl H, Gelpi E, Schonegger K, Haberler C, Birner P et al (2006) Histopathologic assessment of hot-spot microvessel density and vascular patterns in glioblastoma: poor observer agreement limits clinical utility as prognostic factors: a translational research project of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Cancer 107(1):162–170. PubMed PMID: 16721804

    Article  PubMed  Google Scholar 

  66. Rubin MA, Buyyounouski M, Bagiella E, Sharir S, Neugut A, Benson M et al (1999) Microvessel density in prostate cancer: lack of correlation with tumor grade, pathologic stage, and clinical outcome. Urology 53(3):542–547. PubMed PMID: 10096381

    Article  CAS  PubMed  Google Scholar 

  67. Pluda JM (1997) Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies. Semin Oncol 24(2):203–218. PubMed PMID: 9129690

    CAS  PubMed  Google Scholar 

  68. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2(1):a006429. PubMed PMID: 22315715. Pubmed Central PMCID: 3253027

    Article  PubMed  PubMed Central  Google Scholar 

  69. Grizzi F, Colombo P, Taverna G, Chiriva-Internati M, Cobos E, Graziotti P et al (2007) Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl Immunohistochem Mol Morphol 15(2):134–139. PubMed PMID: 17525623

    Article  PubMed  Google Scholar 

  70. Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60(14):3683–3688. PubMed PMID: 10919633

    CAS  PubMed  Google Scholar 

  71. Tretiakova M, Antic T, Binder D, Kocherginsky M, Liao C, Taxy JB et al (2013) Microvessel density is not increased in prostate cancer: digital imaging of routine sections and tissue microarrays. Hum Pathol 44(4):495–502. PubMed PMID: 23069258

    Article  PubMed  Google Scholar 

  72. Taverna G, Colombo P, Grizzi F, Franceschini B, Ceva-Grimaldi G, Seveso M et al (2009) Fractal analysis of two-dimensional vascularity in primary prostate cancer and surrounding non-tumoral parenchyma. Pathol Res Pract 205(7):438–444. PubMed PMID: 19232838

    Article  PubMed  Google Scholar 

  73. Steiner I, Jung K, Miller K, Stephan C, Erbersdobler A (2012) Expression of endothelial factors in prostate cancer: a possible role of caveolin-1 for tumour progression. Oncol Rep 27(2):389–395. PubMed PMID: 22075971

    CAS  PubMed  Google Scholar 

  74. Jain RK (1997) The Eugene M. Landis Award Lecture 1996. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 4(1):1–23. PubMed PMID: 9110280

    Article  CAS  PubMed  Google Scholar 

  75. Jiang J, Chen Y, Zhu Y, Yao X, Qi J (2011) Contrast-enhanced ultrasonography for the detection and characterization of prostate cancer: correlation with microvessel density and Gleason score. Clin Radiol 66(8):732–737. PubMed PMID: 21524418

    Article  CAS  PubMed  Google Scholar 

  76. Franiel T, Ludemann L, Rudolph B, Rehbein H, Stephan C, Taupitz M et al (2009) Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood flow parameters and correlation with histologic parameters. Radiology 252(1):101–108. PubMed PMID: 19561252

    Article  PubMed  Google Scholar 

  77. Mucci LA, Powolny A, Giovannucci E, Liao Z, Kenfield SA, Shen R et al (2009) Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol Off J Am Soc Clin Oncol 27(33):5627–5633. PubMed PMID: 19858401. Pubmed Central PMCID: 2792955

    Article  Google Scholar 

  78. de la Taille A, Katz AE, Bagiella E, Buttyan R, Sharir S, Olsson CA et al (2000) Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. Am J Clin Pathol 113(4):555–562. PubMed PMID: 10761458

    Article  PubMed  Google Scholar 

  79. Osimani M, Bellini D, Di Cristofano C, Palleschi G, Petrozza V, Carbone A et al (2012) Perfusion MDCT of prostate cancer: correlation of perfusion CT parameters and immunohistochemical markers of angiogenesis. AJR Am J Roentgenol 199(5):1042–1048. PubMed PMID: 23096177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Stifter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stifter, S., Patrinicola, F., Taverna, G., Grizzi, F. (2017). Angiogenesis and Prostate Cancer: Friends or Foes. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_11

Download citation

Publish with us

Policies and ethics