Skip to main content

What Is the Role of Mobile No-Touch Disinfection Technology in Optimizing Healthcare Environmental Hygiene?

  • Chapter
  • First Online:
Infection Prevention

Abstract

Over the past decade, it has become widely recognized that effective and thorough cleaning of patient zone surfaces represents a critical component of horizontal healthcare-associated infection prevention. While liquid chemistries are well established as the most critically useful approach to surface disinfection, innovative no-touch disinfection technologies have evolved that complement many traditional cleaning activities. In order to clarify the potential clinical role of these technologies, a review of published studies was undertaken using a structured evidentiary hierarchy as proposed by McDonald and Arduino in 2013. While the in vitro capabilities and limitations of both ultraviolet and hydrogen peroxide vapor technologies have been quantified, clinical studies have yet to provide clear guidance for practitioners considering the use of such systems. On the basis of this review, recommendations to improve future clinical trials of patient zone environmental hygiene interventions were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarck JL, Umscheid CA. Cleaning hospital room surfaces to prevent healthcare-associated infections. Ann Intern Med. 2015;163:598–607.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Knelson LP, Williams DA, Gergen MF, Rutala WA, Weber DJ, et al. A comparison of environmental contamination by patients infected or colonized with methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci: a multicenter study. Infect Control Hosp Epidemiol. 2014;35(7):872–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dancer SJ. How do we assess hospital cleaning? A proposal for microbiological standards for surface hygiene in hospitals. J Hosp Infect. 2004;56:10–5.

    Article  CAS  PubMed  Google Scholar 

  4. Hayden MK, Bonten MJ, Blom DW, Lyle EA, van de Vijver DA, Weinstein RA. Reduction in acquisition of vancomycin-resistant enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006;42(11):1552–60.

    Article  PubMed  Google Scholar 

  5. Carling PC, Briggs J, Hylander D, Perkins J. Evaluation of patient area cleaning in 3 hospitals using a novel targeting methodology. Am J Infect Control. 2006;34:513–9.

    Article  PubMed  Google Scholar 

  6. Carling PC, Parry MF, Von Beheren SM. Identifying opportunities to enhance environmental cleaning in 23 acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Carling PC. Optimizing healthcare environmental hygiene. Infect Dis Clin N Am. 2016;30(3):639–60.

    Article  Google Scholar 

  8. Huang S, Datta R, Platt R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med. 2006;166:1945–51.

    Article  PubMed  Google Scholar 

  9. Carling PC, Bartley JM. Evaluating hygienic cleaning in healthcare settings: what you do not know can harm your patients. Am J Infect Control. 2010;38:S41–50.

    Article  PubMed  Google Scholar 

  10. Carling PC, Parry MM, Rupp ME, Po JL, Dick B, Von Beheren S. Improving cleaning of the environment surrounding patients in 36 acute care hospitals. Infect Control Hosp Epidemiol. 2008b;29(11):1035–41.

    Article  PubMed  Google Scholar 

  11. Carling PC, Eck EK. Achieving sustained improvement in environmental hygiene using coordinated benchmarking in 12 hospitals. Abstracts of the SHEA Fifth Decennial Meeting; Atlanta, GA. March 18–22, 2010.

    Google Scholar 

  12. Carling PC, Herwaldt LA, VonBeheren S. The Iowa disinfection cleaning project: opportunities, successes and challenges of a structured intervention project in 56 hospitals. Presented at the Iowa Association for Infection Prevention Annual Meeting, 10 May 2012.

    Google Scholar 

  13. Holmer L, Russell D, Steger P, Creed J, Speer R, Lakhanpal A. Sustainability of an environmental cleaning program in California small and critical access hospitals. Abstract presented at the annual meeting of the Association for Infection Control Professionals. San Diego, CA, May 2014.

    Google Scholar 

  14. Datta R, Platt R, Yokoe DS, Huang SS. Environmental cleaning intervention and risk of acquiring multidrug-resistant organisms from prior room occupants. Arch Intern Med. 2011;171(6):491–4.

    Article  PubMed  Google Scholar 

  15. Sitzlar B, Deshparade A, Fentelli D, Kundnapu S, Sethi AK, Donskey CJ. An environmental disinfection odyssey: evaluation of dequential interventions to improve disinfection of Clostridium Difficile patient rooms. Infect Control Hosp Epidemiol. 2013;34(5):459–65.

    Article  PubMed  Google Scholar 

  16. Carling PC, Huang SS. Improving healthcare environmental cleaning and disinfection: current and evolving issues. Infect Control Hosp Epidemiol. 2013;34(5):507–13.

    Article  PubMed  Google Scholar 

  17. Septimus E, Weinstein A, Perl T, Goldmann D, Yokoe S. Approaches for preventing healthcare-associated infections: go long or go wide? Infect Control Hosp Epidemiol. 2014;35(7):797–801.

    Article  PubMed  Google Scholar 

  18. Qureshi Z, Yassin M. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning. Infect Disord – Drug Targets. 2013;13:191–5.

    Article  CAS  PubMed  Google Scholar 

  19. French G, Otter J, Shannon K, Adams N, Watling D, Parks M. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect. 2004;57:31–7.

    Article  CAS  PubMed  Google Scholar 

  20. Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of “no-touch” automated room disinfection systems in infection prevention and control. J Hosp Infect. 2013;83:1–13.

    Article  CAS  PubMed  Google Scholar 

  21. Rutala W, Weber D. Are room decontamination units needed to prevent transmission of environmental pathogens? Infect Control Hosp Epidemiol. 2011;32(8):743–7.

    Article  PubMed  Google Scholar 

  22. Nerandzic MM, Thota P, Sandar CT, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015;36:192–7.

    Article  PubMed  Google Scholar 

  23. PRISMA – Transparant reporting of systemic reviews and meta-analysis. 2015. Accessed at: http://www.prisma-statement.org/Extensions/Protocols.aspx. 18 Sept 2016.

  24. McDonald LC, Arduino M. Climbing the evidentiary hierarchy for environmental infection control. Clin Infect Dis. 2013;56(1):36–9.

    Article  PubMed  Google Scholar 

  25. Lemmen S, Scheithauer S, Hafner H, Yezli S, Mohr M, Otter J. Evaluation of hydrogen peroxide vapor for the inactivation of nosocomial pathogens on porous and nonporous surfaces. Am J Infect Control. 2015;43:82–5.

    Article  CAS  PubMed  Google Scholar 

  26. Goyal S, Chander Y, Otter J. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect. 2014;86:255–9.

    Article  CAS  PubMed  Google Scholar 

  27. Pottage T, Richardson C, Parks S, Walker JT, Bennett AM. Evaluation of hydrogen peroxide gaseous disinfection systems to decontaminate viruses. J Hosp Infect. 2010;74:55–61.

    Article  CAS  PubMed  Google Scholar 

  28. Otter JA, Cummins M, Ahmad F, van Tonder C, Drabu JY. Assessing the biological efficacy and rate of recontamination following hydrogen peroxide vapour decontamination. J Hosp Infect. 2007;67:182–8.

    Article  CAS  PubMed  Google Scholar 

  29. Hardy KJ, Gossain S, Henderson N, Drugan C, Oppenheim BA, Gao F, Hawkey PM. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect. 2007;66(4):360–8.

    Article  CAS  PubMed  Google Scholar 

  30. Boyce JM, Havill NL, Otter JA, et al. Impact of hydrogen vapor room decontamination on clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol. 2008;29(8):723–9.

    Article  PubMed  Google Scholar 

  31. Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009;30:507–14.

    Article  CAS  PubMed  Google Scholar 

  32. Otter J, Yezli S, Schouten MA, van Zanten A, Zielman GH, Nohlmans-Paulssen M. Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak. Am J Infect Control. 2010;38:754–6.

    Article  PubMed  Google Scholar 

  33. Passaretti CL, Otter JA, Reich NG, et al. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis. 2013;56:627–35.

    Article  Google Scholar 

  34. Manian FA, Griesenauer S, Senkel D, Setzer J, Doll SA, Perry AM, Wiechens M. Isolation of Acinetobacter baumannii complex and methicillin resistant Staphylococcus aureus from hospital rooms following terminal cleaning and disinfection: can we do better? Infect Control Hosp Epidemiol. 2011;32(7):667–72.

    Article  PubMed  Google Scholar 

  35. Dryden M, Parnaby R, Dailly S, et al. Hydrogen peroxide vapour decontamination in the control of a polyclonal methicillin-resistant Staphylococcus aureus outbreak on a surgical ward. J Hosp Infect. 2008;68:1990–2.

    Article  Google Scholar 

  36. Fishner D, Pang L, Salmon S, Lin R, Teo C, Tambyah P, Jureen R, Cook A, Otter J. A successful vancomycin-resistant reduction bundle at a Singapore Hospital. Infect Control Hosp Epidemiol. 2016;37(1):107–9.

    Article  Google Scholar 

  37. Chmielarczyk PG, Higgins J, Wojkowska-Mach E, Synowiec E, Zander E, et al. Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J Hosp Infect. 2012;81:239–45.

    Article  CAS  PubMed  Google Scholar 

  38. Horn K, Otter JA. Hydrogen peroxide vapor room disinfection and hand hygiene improvements reduce Clostridium difficile infection, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and extended-spectrum B-lactamase. Am J Infect Control. 2015;43:1354–6.

    Article  PubMed  Google Scholar 

  39. Rutala WA, Gergen MF, Weber DJ. Room contamination with UV radiation. Inhfect Control Hosp Epidemiol. 2010;31(10):1025–9.

    Article  Google Scholar 

  40. Nerandzic MM, Cadnum JL, Pultz MJ, DOnskey CJ. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis. 2010;10:197–2334. 10-97

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boyce JM, Havill NL, Moore BA. Terminal decontamination of patient rooms using an automated mobile UV light unit. Infect Control Hosp Epidemiol. 2011;32(8):732–42.

    Article  Google Scholar 

  42. Havill N, Moore B, Boyce J. Comparison of the microbiological efficacy of hydrogen peroxide vapor and ultraviolet light processes for room decontamination. Infect Control Hosp Epidemiol. 2012;33(5):507–12.

    Article  PubMed  Google Scholar 

  43. Mahida N, Vaughan N, Boswell T. First UK evaluation of an automated ultraviolet-C room decontamination device (Tu-D™). J Hosp Infect. 2013;84:332–5.

    Article  CAS  PubMed  Google Scholar 

  44. Nerandzic MM, Fisher CW, Donskey CJ. Sorting through the wealth of options: comparative evaluation of two ultraviolet disinfection systems. PLoS One. 2014;9:e107444.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang A, Nerandzic MM, Kundrapu S, Donskey CJ. Does organic material on hospital surfaces reduce the effectiveness of hypochlorite and UV radiation for disinfection of Clostridium difficile? Infect Control Hosp Epidemiol. 2013;34:1106–8.

    Article  PubMed  Google Scholar 

  46. Stibich M, Stachowiak J, Tanner B, Berkheiser M, Moore L, Raad I, Chemaly R. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on hospital operations and microbial reduction. Infect Control Hosp Epidemiol. 2011;32(3):286–8.

    Article  PubMed  Google Scholar 

  47. Jinadatha C, Quezada R, Huber TW, Williams JB, Zeber JE, Copeland LA. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC Infect Dis. 2014;14:187–2334.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jinadatha C, Villamaria FC, Restrepo MI, Nagaraja GM, Liao I, Stock EM, et al. Is the pulsed xenon ultraviolet light no-touch disinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning? Am J Infect Control. 2015;43:878–81.

    Article  PubMed  Google Scholar 

  49. Ghantojii SS, Stibich M, Stachowiak J, et al. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental clostridium difficile contamination on high-touch surfaces in clostridium difficile infection isolation rooms. J Med Microbiol. 2015;64:191–4.

    Article  Google Scholar 

  50. Napolitano N, Mahapatra T, Tang W. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce healthcare-acquired infections. Am J Infect Control. 2015;43:1342–6.

    Article  PubMed  Google Scholar 

  51. Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection a community hospital. Am J Infect Control. 2013;41:746–8.

    Article  PubMed  Google Scholar 

  52. Haas JP, Menz J, Dusza S, Montecalvo MA. Implementation and impact of ultraviolet environmental disinfection in an acute care setting. Am J Infect Control. 2014;42(6):586–90.

    Article  PubMed  Google Scholar 

  53. Miller R, Simmons S, Dale C, Stachowiak J, Stibich M. Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a longterm acute care facility. Am J Infect Control. 2015;43:1350–3.

    Article  PubMed  Google Scholar 

  54. Nagaraja A, Visintainer P, Haas JP, Menz J, Wormeser GP, Montecalvo MA. Clostridium difficile infections before and during use of ultraviolet disinfection. Am J Infect Control. 2015;43:940–5.

    Article  PubMed  Google Scholar 

  55. Carling PC, Perkins J, Ferguson J, Thomasse A. Evaluating a new paradigm for company surface disinfection in clinical practice. Infect Control Hosp Epidemiol. 2014;35(11):1349–55.

    Article  PubMed  Google Scholar 

  56. Rutala WA, Gergen MF, Tande MF, Weber DJ. Rapid hospital room decontamination using ultraviolet (UV) light with a nanostructured UV-reflective wall coating. Infect Control Hosp Epidemiol. 2013;34:527–9.

    Article  PubMed  Google Scholar 

  57. Schweizer ML, Braun, Milstone AM. Research methods in healthcare epidemiology and antimicrobial stewardship-quasi-experimental designs. Infect Control Hosp Epidemiol. 2016;41:1–6.

    Google Scholar 

  58. Dancer SJ. Dos and don’ts for hospital cleaning. CurrOpin Infect Dis. 2016;29(4):41523.

    Google Scholar 

  59. Carling PC, Kaye K. Acinetobacter baumannii environmental epidemiology: do culture methods impact findings? Abstract presented at the annual meeting of the Society for Hospital Epidemiology of America. Orlando FL, May 2015.

    Google Scholar 

  60. Schwizer ML, Braun BI, Milstone AM. Research methods in healthcare research design. Infect Control Hosp Epidemiol. 2016;37(10):1135–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Carling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Carling, P.C. (2018). What Is the Role of Mobile No-Touch Disinfection Technology in Optimizing Healthcare Environmental Hygiene?. In: Bearman, G., Munoz-Price, S., Morgan, D., Murthy, R. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-60980-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60980-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60978-2

  • Online ISBN: 978-3-319-60980-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics