Skip to main content

Evaluating Alzheimer’s Disease Diagnosis Using Texture Analysis

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

Many advanced automated systems have been proposed for the diagnosis of Alzheimer’s Disease (AD). Most of them use Magnetic Resonance Imaging (MRI) as input data, since it provides high resolution images of the structure of the brain. Usually, Computer Aided Diagnosis (CAD) systems are based on massive univariate test and classification, although many strategies based on signal decomposition have been proposed for feature extraction in MRI images. In this work, we propose a novel analysis technique comprising the texture analysis of different cortical and subcortical structures in the brain. The procedure shows promising results, achieving up to 81.3% accuracy in the diagnosis task, and up to 79.6% accuracy using only one texture measure at the most discriminant region. These results prove the ability of textural analysis in the characterization of structural neurodegeneration of the brain, and paves the way to future longitudinal and conversion analyses.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alemán, Y., Melie, L., Valdés, P.: Ibaspm: toolbox for automatic parcellation of brain structures. In: 12th Annual Meeting of the Organization for Human Brain Mapping, pp. 11–15, June 2006

    Google Scholar 

  2. Alzheimer’s Association: 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 12(4), 459–509 (2016)

    Article  Google Scholar 

  3. Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  4. Baron, J.C., Chételat, G., Desgranges, B., Perchey, G., Landeau, B., de la Sayette, V., Eustache, F.: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14(2), 298–309 (2001)

    Article  Google Scholar 

  5. Dubois, B., Feldman, H.H., Jacova, C., DeKosky, S.T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6(8), 734–746 (2007)

    Article  Google Scholar 

  6. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, Cambridge (2007)

    Book  Google Scholar 

  7. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  8. Khedher, L., Ramírez, J., Górriz, J., Brahim, A., Segovia, F.: Early diagnosis of Alzheimers disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151, 139–150 (2015)

    Article  Google Scholar 

  9. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on AI, pp. 1137–1145 (1995)

    Google Scholar 

  10. Leandrou, S., Petroudi, S., Kyriacou, P.A., Reyes-Aldasoro, C.C., Pattichis, C.S.: An overview of quantitative magnetic resonance imaging analysis studies in the assessment of Alzheimer’s disease. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IP, vol. 57, pp. 281–286. Springer, Cham (2016). doi:10.1007/978-3-319-32703-7_56

    Chapter  Google Scholar 

  11. Lerch, J.P., Pruessner, J.C., Zijdenbos, A., Hampel, H., Teipel, S.J., Evans, A.C.: Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb. Cortex 15(7), 995–1001 (2005)

    Article  Google Scholar 

  12. Malpica, N., Ortuño, J.E., Santos, A.: A multichannel watershed-based algorithm for supervised texture segmentation. Pattern Recogn. Lett. 24(9), 1545–1554 (2003)

    Article  MATH  Google Scholar 

  13. Martinez-Murcia, F., Górriz, J., Ramírez, J., Moreno-Caballero, M., Gómez-Río, M., Initiative, P.P.M., et al.: Parametrization of textural patterns in 123i-ioflupane imaging for the automatic detection of Parkinsonism. Med. Phys. 41(1), 012502 (2014)

    Article  Google Scholar 

  14. Martinez-Murcia, F., Górriz, J., Ramírez, J., Ortiz, A., The Alzheimers Disease Neuroimaging Initiative: A spherical brain mapping of MR images for the detection of Alzheimers disease. Curr. Alzheimer Res. 13(5), 575–588 (2016)

    Article  Google Scholar 

  15. Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., Salas-González, D.: Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst. Appl. 39(10), 9676–9685 (2012)

    Article  Google Scholar 

  16. Martinez-Murcia, F.J., Ortiz, A., Górriz, J.M., Ramírez, J., Illán, I.A.: A volumetric radial LBP projection of MRI brain images for the diagnosis of Alzheimer’s disease. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 19–28. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_3

    Chapter  Google Scholar 

  17. Martínez-Murcia, F.J., Górriz, J., Ramírez, J., Puntonet, C.G., Illán, I.: Functional activity maps based on significance measures and independent component analysis. Comput. Methods Programs Biomed. 111(1), 255–268 (2013)

    Article  Google Scholar 

  18. Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., Alvarez Illán, I., Salas-González, D., Segovia, F., A.D.N.I.: Projecting MRI brain images for the detection of Alzheimer’s disease. Stud. Health Technol. Inform. 207, 225–233 (2015)

    Google Scholar 

  19. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  20. Philips, C., Li, D., Raicu, D., Furst, J.: Directional Invariance of Co-occurrence Matrices within the Liver. In: International Conference on Biocomputation, Bioinformatics, and Biomedical Technologies, pp. 29–34 (2008)

    Google Scholar 

  21. Reyes-Aldasoro, C.C., Bhalerao, A.: The Bhattacharyya space for feature selection and its application to texture segmentation. Pattern Recogn. 39(5), 812–826 (2006)

    Article  MATH  Google Scholar 

  22. Segovia, F., Górriz, J., Ramírez, J., Salas-Gonzalez, D., Álvarez, I.: Early diagnosis of Alzheimers disease based on partial least squares and support vector machine. Expert Syst. Appl. 40(2), 677–683 (2013)

    Article  Google Scholar 

  23. Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J.: Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30136-3_80

    Chapter  Google Scholar 

  24. Theodoridis, S., Pikrakis, A., Koutroumbas, K., Cavouras, D.: Introduction to Pattern Recognition: A Matlab Approach. Academic Press, Cambridge (2010)

    Google Scholar 

  25. Towey, D.J., Bain, P.G., Nijran, K.S.: Automatic classification of 123I-FP-CIT (DaTSCAN) SPECT images. Nucl. Med. Commun. 32(8), 699–707 (2011)

    Article  Google Scholar 

  26. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the mni MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  27. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  28. Zhang, J., Yu, C., Jiang, G., Liu, W., Tong, L.: 3D texture analysis on MRI images of Alzheimers disease. Brain Imaging Behav. 6(1), 61 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the MINECO/ FEDER under the TEC2015-64718-R project and the Consejería de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC- 7103.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Francisco Jesús Martinez-Murcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Martinez-Murcia, F.J. et al. (2017). Evaluating Alzheimer’s Disease Diagnosis Using Texture Analysis. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics