Skip to main content

Performance Comparison of Nodally Integrated Galerkin Meshfree Methods and Nodally Collocated Strong Form Meshfree Methods

  • Chapter
  • First Online:
Advances in Computational Plasticity

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 46))

Abstract

For a truly meshfree technique, Galerkin meshfree methods rely chiefly on nodal integration of the weak form. In the case of Strong Form Collocation meshfree methods, direct collocation at the nodes can be employed. In this paper, performance of these node-based Galerkin and collocation meshfree methods is compared in terms of accuracy, efficiency, and stability. Considering both accuracy and efficiency, the overall effectiveness in terms of CPU time versus error is also assessed. Based on the numerical experiments, nodally integrated Galerkin meshfree methods with smoothed gradients and variationally consistent integration yield the most effective solution technique, while direct collocation of the strong form at nodal locations has comparable effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Chen, C. Pan, C.-T. Wu, W.K. Liu, Reproducing Kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139(1–4), 195–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. J.-S. Chen, C. Pan, C.-T. Wu, Large deformation analysis of rubber based on a reproducing kernel particle method. Comput. Mech. 19(3), 211–227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-S. Chen, C. Pan, C.M.O.L. Roque, H.-P. Wang, A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22(3), 289–307 (1998)

    Article  MATH  Google Scholar 

  4. P.C. Guan, J.S. Chen, Y. Wu, H. Teng, J. Gaidos, K. Hofstetter, M. Alsaleh, Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech. Mater. 41(6), 670–683 (2009)

    Article  Google Scholar 

  5. S.-W. Chi, C.-H. Lee, J.-S. Chen, P.-C. Guan, A level set enhanced natural kernel contact algorithm for impact and penetration modeling. Int. J. Numer. Methods Eng. 102(3–4), 839–866 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. You, J.-S. Chen, H. Lu, Filters, reproducing kernel, and adaptive meshfree method. Comput. Mech. 31(3), 316–326 (2003)

    MATH  Google Scholar 

  7. T. Rabczuk, T. Belytschko, Adaptivity for structured meshfree particle methods in 2D and 3D. Int. J. Numer. Methods Eng. 63(11), 1559–1582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Li, W.K. Liu, Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1–34 (2002)

    Article  Google Scholar 

  9. J.S. Chen, M. Hillman, M. Rüter, An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 95(5), 387–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Belytschko, Y. Guo, W.K. Liu, S.P. Xiao, A unifieded stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 48(9), 1359–1400 (2000)

    Article  MATH  Google Scholar 

  11. T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37, April 1993, 229–256, (1994)

    Google Scholar 

  12. S.R. Beissel, T. Belytschko, Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bonet, S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Methods Eng. July 1998, 1189–1214, (2000)

    Google Scholar 

  14. J.-S. Chen, C.-T. Wu, S. Yoon, A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Eng. 207, February 2000, 435–466 (2001)

    Google Scholar 

  15. I. Babuška, U. Banerjee, J.E. Osborn, Q. Li, Quadrature for meshless methods. Int. J. Numer. Methods Eng. 76(9), 1434–1470 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. S.N. Atluri, T.L. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput. Model. Simul. Eng. 3(3), 187–196 (1998)

    Google Scholar 

  17. M. Hillman, J.-S. Chen, S.-W. Chi, Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comp. Part. Mech. 1, 245–256 (2014)

    Article  Google Scholar 

  18. C.-T. Wu, M. Koishi, W. Hu, A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method, Comput. Mech. (2015)

    Google Scholar 

  19. M. Hillman, J.S. Chen, An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int. J. Numer. Methods Eng. 107, 603–630 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. P.W. Randles, L.D. Libersky, Normalized SPH with stress points, Int. J. Numer. Methods Eng. 48, May 1999, 1445–1462 (2000)

    Google Scholar 

  21. T. Rabczuk, T. Belytschko, S.P. Xiao, Stable particle methods based on Lagrangian kernels. Comput. Methods Appl. Mech. Eng. 193(12–14), 1035–1063 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Nagashima, Node-By-Node Meshless Approach and Its Applications to Structural Analyses, vol. 385, April 1997, pp. 2–3, (1999)

    Google Scholar 

  23. G.-R. Liu, G.Y. Zhang, Y.Y. Wang, Z.H. Zhong, G.Y. Li, X. Han, A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int. J. Solids Struct. 44(11–12), 3840–3860 (2007)

    Article  MATH  Google Scholar 

  24. J.-S. Chen, W. Hu, M.A. Puso, Y. Wu, X. Zhang, Strain smoothing for stabilization and regularization of galerkin meshfree methods. Lect. Notes Comput. Sci. Eng. 57, 57–75 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Wang, J. Wu, An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput. Methods Appl. Mech. Eng. 298, 485–519 (2016)

    Article  MathSciNet  Google Scholar 

  26. E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. with Appl. 19(8), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Oñate, S.R. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng. 39, December 1995, 3839–3866 (1996)

    Google Scholar 

  28. H.-Y. Hu, C.-K. Lai, J.-S. Chen, A study on convergence and complexity of reproducing kernel collocation method. Interact. Multiscale Mech. 2(3), 295–319 (2009)

    Article  Google Scholar 

  29. H.-Y. Hu, J.-S. Chen, W. Hu, Weighted radial basis collocation method for boundary value problems. Int. J. Numer. Methods Eng. 69(13), 2736–2757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.-Y. Hu, J.-S. Chen, W. Hu, Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differ. Equ. 27(3), 554–580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.-W. Chi, J.-S. Chen, H.-Y. Hu, J.P. Yang, A gradient reproducing kernel collocation method for boundary value problems. Int. J. Numer. Methods Eng. 93(13), 1381–1402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods. Int. J. Numer. Methods Fluids. 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. W.K. Liu, S. Li, T. Belytschko, Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput. Methods Appl. Mech. Eng. 143(1–2), 113–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hillman, M., Chen, J.S. (2018). Performance Comparison of Nodally Integrated Galerkin Meshfree Methods and Nodally Collocated Strong Form Meshfree Methods. In: Oñate, E., Peric, D., de Souza Neto, E., Chiumenti, M. (eds) Advances in Computational Plasticity. Computational Methods in Applied Sciences, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-60885-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60885-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60884-6

  • Online ISBN: 978-3-319-60885-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics