Skip to main content

Two-Way Coupled Eulerian–Eulerian Simulations of a Viscous Snow Phase with Turbulent Drag

  • Chapter
  • First Online:
OpenFOAM®
  • 4597 Accesses

Abstract

A novel two-way coupled Eulerian–Eulerian CFD formulation was developed to simulate drifting snow based on turbulent drag and a new viscous treatment of the drifting snow phase, derived from first principles. This approach allowed explicit resolution of the saltation layer without resorting to empiricism, unlike other Eulerian–Eulerian models based on mixture formulations and one-way coupling. Initial validations were carried out against detailed snow flux, airflow velocity, and turbulent kinetic energy measurements in a controlled experimental simulation of drifting snow in a wind tunnel using actual snow particles. The two-way coupled approach was found capable of simulating drifting snow fluxes in both saltation and suspension layers with reasonable accuracy. Recommendations were made to improve the accuracy of the method for air velocity and turbulent kinetic energy, and to allow simulating a drifting snow phase with a particle size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bagnold, The physics of blown sand and desert dunes. London, Methuen, 1941.

    Google Scholar 

  2. B. Lee, J. Tu, and C. Fletcher, “On numerical modeling of particle-wall impaction in relation to erosion prediction: Eulerian versus Lagrangian method,” Wear, vol. 252, pp. 179–188, 2002.

    Article  Google Scholar 

  3. T. Uematsu, T. Nakata, K. Takeuchi, Y. Arisawa, and Y. Kaneda, “Three-dimensional numerical simulation of snowdrift,” Cold Regions Science and Technology, vol. 20, pp. 65–73, 1991.

    Article  Google Scholar 

  4. M. Naaim, F. Naaim-Bouvet, and H. Martinez, “Numerical simulation of drifting snow: erosion and deposition model,” Annals of Glaciology, vol. 26, pp. 191–196, 1998.

    Article  Google Scholar 

  5. Y. Tominaga and A. Mochida, “CFD prediction of flowfield and snowdrift around a building complex in a snowy region,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 81, no. 13, pp. 273 – 282, 1999.

    Article  Google Scholar 

  6. J. Pomeroy and D. Gray, “Saltation of snow,” Water Resources Research, vol. 26, no. 7, pp. 1583–1594, 1990.

    Article  Google Scholar 

  7. T. Okaze, A. Mochida, Y. Tominaga, M. Nemoto, Y. Ito, and T. Shida, “Modeling of drifting snow development in a boundary layer and its effect on windfield,” in The Sixth Snow Engineering Conference, Whistler, B.C., Canada, June 1–5 2008.

    Google Scholar 

  8. Y. Tominaga, T. Okaze, and A. Mochida, “CFD modeling of snowdrift around a building: overview of models and evaluation of a new approach,” Building and Environment, vol. 46, pp. 899–910, 2011.

    Article  Google Scholar 

  9. B. Bang, A. Nielsen, P. Sundsbø, and T. Wiik, “Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM),” Energy and Buildings, vol. 21, no. 3, pp. 235–243, 1994.

    Article  Google Scholar 

  10. J. Beyers, “Numerical modeling of the snowdrift characteristics surrounding the SANAE IV research station,” Ph.D. Dissertation, Department of Mechanical Engineering, University of Stellenbosch, 2004.

    Google Scholar 

  11. J. Beyers and B. Waechter, “Modeling transient snowdrift development around complex three-dimensional structures,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, pp. 1603–1615, 2008.

    Article  Google Scholar 

  12. P. Sundsbø, “Numerical simulations of wind deflection fins to control snow accumulation in building steps,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 74–76, pp. 543–552, 1998.

    Google Scholar 

  13. P. Gauer, “Blowing and drifting snow in alpine terrain: A physically-based numerical model and related field measurements,” Ph.D. dissertation, ETH Zurich, 1999.

    Google Scholar 

  14. OpenFOAM Documentation, Extended Code Guide, 2018.

    Google Scholar 

  15. A. Gosman, R. Issa, C. Lekakou, S. Politis, and M. Looney, “Multidimensional modeling of turbulent two-phase flows in stirred vessels,” AIChE Journal, vol. 38, no. 12, pp. 1946–1956, 1992.

    Article  Google Scholar 

  16. D. Gidaspow, “Hydrodynamics of fluidization and heat transfer: supercomputer modelling,” Appl. Mech. Rev., vol. 39, pp. 1–22, 1986.

    Article  Google Scholar 

  17. L. Schiller and Z. Naumann, “A drag coefficient correlation,” Z. Ver. Deutsch. Ing., vol. 77, 1935.

    Google Scholar 

  18. H. Enwald, E. Peirano, and A.-E. Almstedt, “Eulerian two-phase flow theory applied to fluidization,” Int. J. of Multiphase Flow, vol. 22, pp. 21–66, 1996.

    Article  Google Scholar 

  19. H. Weller, “Derivation, modelling and solution of the conditionally averaged two-phase flow equations,” OpenCFD Ltd, Report TR/HGW/02, 2005.

    Google Scholar 

  20. H. Teufelsbauer, “A two-dimensional snow creep model for alpine terrain,” Natural Hazards, vol. 56, pp. 481–497, 2011.

    Article  Google Scholar 

  21. R. Kind, Handbook of Snow, Principles, Processes, Management and Use. Pergamon Press, 1981, ch. Snowdrifting, pp. 338–359.

    Google Scholar 

  22. T. Okaze, A. Mochida, Y. Tominaga, M. Nemoto, T. Sato, Y. Sasaki, and K. Ichinohe, “Wind tunnel investigation of drifting snow development in a boundary layer,” J. Wind Eng. Ind. Aerodyn., vol. 104-106, pp. 532–539, 2012.

    Article  Google Scholar 

  23. Z. Boutanios and H. Jasak, “Viscous treatment of the snow phase in Eulerian-Eulerian simulations of drifting snow,” in The 14th International Conference on Wind Engineering, Porto Alegre, Brazil, June 21-26 2015.

    Google Scholar 

  24. W. Budd, “The drifting of nonuniform snow particles,” in Studies in Antarctic meteorology, M. Rubin, Ed. American Geophysical Union, 1966.

    Google Scholar 

  25. R. Schmidt, “Vertical profiles of wind speed, snow concentration and humidity in blowing snow,” Boundary-Layer Meteorology, vol. 23, no. 2, pp. 223–246, 1982.

    Article  MathSciNet  Google Scholar 

  26. W. Strahle, “Stagnation point flows with freestream turbulence – the matching condition,” AIAAJ, vol. 23, pp. 1822–1824, 1985.

    Article  Google Scholar 

  27. B. Launder and M. Kato, “Modeling flow-induced oscillations in turbulent flow around square cylinder,” in ASME Fluid Eng. Conference, 1993, p. 20.

    Google Scholar 

  28. P. Durbin, “Separated flow computations with the k–epsilon-v2 model,” AIAA Journal, vol. 33, pp. 659–664, 1995.

    Article  Google Scholar 

  29. T. Okaze, Y. Takano, A. Mochida, and Y. Tominaga, “Development of a new \( k-\epsilon \) model to reproduce the aerodynamic effects of snow particles on a flow field,” J. Wind Eng. Ind. Aerodyn., vol. 144, pp. 118–124, 2015.

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Profs. Akashi Mochida, Tsubasa Okaze, and Yoshihide Tominaga for sharing their experimental results. In particular, the patience and dedication of Prof. Okaze to answering our numerous questions are gratefully acknowledged. Many thanks!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad Boutanios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boutanios, Z., Jasak, H. (2019). Two-Way Coupled Eulerian–Eulerian Simulations of a Viscous Snow Phase with Turbulent Drag. In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics