Skip to main content

Implementation of a Flexible and Modular Multiphase Framework for the Analysis of Surface-Tension-Driven Flows Based on a Hybrid LS-VOF Approach

  • Chapter
  • First Online:
OpenFOAM®

Abstract

The mathematical modelling and numerical simulation of multiphase flows are both demanding and highly complex. In typical problems with industrial relevance, the fluids are often in non-isothermal conditions, and interfacial phenomena are a relevant part of the problem. A number of effects resulting from the presence of temperature differences must be adequately taken into account to make the results of numerical simulations consistent and realistic. Moreover, in general, gradients of surface tension at the interface separating two liquids are a source of numerical issues that can delay (and in some circumstances even prevent) the convergence of the solution algorithm. Here, we propose a fundamental and concerted approach for the simulation of the typical dynamics resulting from the presence of a dispersed phase in an external matrix under non-isothermal conditions based on the modular computer-aided design, modelling and simulation capabilities of the OpenFOAM® environment. The resulting framework is tested against the migration of a droplet induced by thermocapillary effects in the absence of gravity. The simulations are fully three-dimensional and based on an adaptive mesh refinement (AMR) strategy. We describe in detail the countermeasures taken to circumvent the problematic issues associated with the simulation of this kind of flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albadawi A., Donoghue D. B., Robinson A. J., Murray D. B., Delauré Y. M. C., (2013), Influence of surface tension implementation in volume of fluid and coupled Volume of Fluid with Level Set methods for bubble growth and detachment, International Journal of Multiphase Flow, 53, 11–28.

    Article  Google Scholar 

  2. Balasubramaniam R. and Subramanian R. S, (2000), The migration of a drop in a uniform temperature gradient at large Marangoni numbers, Physics of Fluids, 12(4): 733–743.

    Article  MATH  Google Scholar 

  3. Balasubramaniam R., Lacy C.E., Wozniak G., Subramanian R.S., (1996), Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity, Physics of Fluids, 8(4): 872–880.

    Article  Google Scholar 

  4. Berberović, van Hinsberg N. P., Jarkirlić S., Roisman L. V., Tropea C., (2009), Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, Phyical. Review E, 79, 036306.

    Google Scholar 

  5. Brackbill J.U., Kothe D.B., Zemach C., (1992), A Continuum Method for Modeling Surface Tension, Journal of Computational Physics, 100 (2): 335–354.

    Article  MathSciNet  MATH  Google Scholar 

  6. Brady P. T., Hermann M., Lopez J. M., (2011), Confined thermocapillary motion of a three-dimensional deformable drop, Physics of Fluids, 23, 022101.

    Article  Google Scholar 

  7. Brunet P., Baudoin M., Bou Matar O., Zoueshtiagh F., (2010), Droplet displacement an doscillation induced by ultrasonic surface acoustic waves: A quantitative study, Physical Review E 81, 036315.

    Google Scholar 

  8. Fletcher C. A. J., Compuational techniques for fluid-dynamics (Springer Verlag, Berlin, 1991).

    Google Scholar 

  9. Hadland P.H., Balasubramaniam R., Wozniak G., Subramanian R.S., (1999), Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity, Experiments in Fluids, 26: 240–248.

    Article  Google Scholar 

  10. Haj-Hariri H., Shi Q., Borhan A., (1997), Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers, Physics of Fluids 9 (4):845–855.

    Article  Google Scholar 

  11. Harper J.F. and Moore D.W., (1968), The motion of a spherical liquid drop at high Reynolds number, Journal of Fluid Mechanics, 32(2): 367–391.

    Article  MATH  Google Scholar 

  12. Lappa M., (2004), Fluids, Materials and Microgravity: Numerical Techniques and Insights into the Physics, 538 pages, Elsevier Science (2004, Oxford, England).

    Google Scholar 

  13. Lappa M., (2005a) Assessment of VOF Strategies for the analysis of Marangoni Migration, Collisional Coagulation of Droplets and Thermal wake effects in Metal Alloys under Microgravity conditions, Computers, Materials & Continua, 2(1), 51–64.

    Google Scholar 

  14. Lappa M., (2005b), Coalescence and non-coalescence phenomena in multi-material problems and dispersed multiphase flows: Part 2, a critical review of CFD approaches, Fluid Dynamics & Materials Processing, 1(3): 213–234.

    Google Scholar 

  15. Ma X., Balasubramanian R., Subramanian R. S., (1999), Numerical simulation of thermocapillary drop motion with internal circulation, Numerical Heat Transfer, 35, 291–309.

    Article  Google Scholar 

  16. Nguyen N., Ng K. M., Huang X., (2006), Manipulation of ferrofluid droplet using planar coils, Applied Physics Letters 89, 052509.

    Article  Google Scholar 

  17. OpenFOAM® User Guide, 2008.

    Google Scholar 

  18. Subramanian R. S and Balasubramaniam R., (2001), The motion of bubbles an drops in reduced gravity, Cambridge University Press.

    Google Scholar 

  19. Sussman, M. and Fatemi, E., (1999): An efficient, interface-Preserving Level Set Redistancing Algorithm and its application to Interfacial Incompressible Fluid Flow. SIAM Journal of. Scientific Computing, 20, 1165–1191.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sussman, M., Puckett, E., (2000), A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, vol. 162, pp. 301–337.

    Article  MathSciNet  MATH  Google Scholar 

  21. Tryggvason G., Bunner B., Esmaeeli A., Juric D., Al-Rawahi N., Tauber W., Han J., Nas S., and Jan Y.-J., (2001), A Front Tracking Method for the Computations of Multiphase Flow, Journal of Computational Physics, 169: 708–759.

    Article  MathSciNet  MATH  Google Scholar 

  22. Tryggvason G., Scardovelli R., Zaleski S., (2011), Direct numerical simulations of gas-liquid multiphase flows, Cambridge University Press.

    Google Scholar 

  23. Wozniak G., (1991), On the thermocapillary motion of droplets under reduced gravity, Journal of Colloid and Interface Science, 141(1): 245–254.

    Article  Google Scholar 

  24. Yamamoto T., Okano Y., Dost S., (2016), Validation of the S-CLSVOF method with the density-scaled balanced continuum surface force model in multiphase systems coupled with thermocapillary flows, International Journal of Numerical Methods in Fluids.

    Google Scholar 

  25. Yin Z., Chang L., Hu W., Li Q., and Wang H., (2012), Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers, Physics of Fluids, 24, 092101.

    Article  Google Scholar 

  26. Young N.O., Goldstein J.S., Block M.J., (1959), The motion of bubbles in a vertical temperature gradient, Journal of Fluid Mechanics, 6, 350–360.

    Article  MATH  Google Scholar 

  27. Zhao J., Zhang L., Li Z., Qin W., (2011), Topological structure evolvement of flow and temperature fields in deformable drop marangoni migration in microgravity, International Journal of Heat and Mass Transfer, 54, 4655–4663.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Capobianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capobianchi, P., Lappa, M., Oliveira, M.S.N. (2019). Implementation of a Flexible and Modular Multiphase Framework for the Analysis of Surface-Tension-Driven Flows Based on a Hybrid LS-VOF Approach. In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics