Skip to main content

Distributed design of sensor network for abnormal state detection in distributed parameter systems

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

Abstract

The problem of measurement effort distribution for detection of the abnormal state of distributed parameter system monitored with sensor network is considered. The measurement strategy is formulated in terms of maximizing the power of parametric hypothesis test related to the nominal system state. Then, using communication schemes based on the class of so-called gossip algorithms a computational procedure for optimizing the measurement effort over the sensor network is proposed. Finally, the presented fault detection approach is verified on the example of convective-diffusion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. A. Atkinson, A. Donev, and R. Tobias. Optimum experimental designs, with SAS, volume 34. Oxford University Press, 2007.

    Google Scholar 

  • 2. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530, 2006.

    Google Scholar 

  • 3. L. H. Chiang, R. D. Braatz, and E. L. Russell. Fault detection and diagnosis in industrial systems. Springer Science & Business Media, 2001.

    Google Scholar 

  • 4. G. C. Goodwin and R. L. Payne. Dynamic system identification: experiment design and data analysis. 1977.

    Google Scholar 

  • 5. A. Jeremic and A. Nehorai. Landmine detection and localization using chemical sensor array processing. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 47(11):3185, 1999.

    Google Scholar 

  • 6. J. Korbicz and J. M. Kościelny. Modeling, diagnostics and process control: implementation in the diaster system. Springer Science & Business Media, 2010.

    Google Scholar 

  • 7. D. Kowalów and M. Patan. Optimal sensor selection for model identification in iterative learning control of spatio-temporal systems. In Methods and Models in Automation and Robotics (MMAR), 2016 21st International Conference on, pages 70–75. IEEE, 2016.

    Google Scholar 

  • 8. D. Kowalów, M. Patan, W. Paszke, and A. Romanek. Sequential design for model calibration in iterative learning control of dc motor. In Methods and Models in Automation and Robotics (MMAR), 2015 20th International Conference on, pages 794–799. IEEE, 2015.

    Google Scholar 

  • 9. A. Nehorai, B. Porat, and E. Paldi. Detection and localization of vapor-emitting sources. IEEE Transactions on Signal Processing, 43(1):243–253, 1995.

    Google Scholar 

  • 10. K. Patan, M. Patan, and D. Kowalw. Optimum training design for neural network in synthesis of robust model predictive control. In 55th IEEE Conference on Decision and Control - CDC 2016, pages 3401–3406, Las Vegas, USA, 2016. IEEE Explore.

    Google Scholar 

  • 11. M. Patan. A parallel sensor scheduling technique for fault detection in distributed parameter systems. In Euro-Par 2008–Parallel Processing, pages 833–843. Springer, 2008.

    Google Scholar 

  • 12. M. Patan. Distributed scheduling of sensor networks for identification of spatiotemporal processes. International Journal of Applied Mathematics and Computer Science, 22(2):299–311, 2012.

    Google Scholar 

  • 13. M. Patan. Optimal sensor networks scheduling in identification of distributed parameter systems, volume 425. Springer Science & Business Media, 2012.

    Google Scholar 

  • 14. M. Patan and D. Kowalów. Robust sensor scheduling via iterative design for parameter estimation of distributed systems. In Methods and Models in Automation and Robotics (MMAR), 2014 19th International Conference On, pages 618–623. IEEE, 2014.

    Google Scholar 

  • 15. M. Patan and D. Kowalów. Distributed configuration of sensor network for fault detection in spatio-temporal systems. In Journal of Physics: Conference Series, volume 783, pages 1–12. IOP Publishing, 2017.

    Google Scholar 

  • 16. M. Patan and K. Patan. Optimal observation strategies for model-based fault detection in distributed systems. International Journal of Control, 78(18):1497–1510, 2005.

    Google Scholar 

  • 17. M. Patan, C. Tricaud, and Y. Chen. Resource-constrained sensor routing for parameter estimation of distributed systems. In Proc. 17th IFAC World Congress, 2008.

    Google Scholar 

  • 18. M. Patan and D. Ucinski. Optimal activation strategy of discrete scanning sensors for fault detection in distributed-parameter systems. In Proceedings of the 16th IFAC world congress, Prague, Czech Republic, pages 4–8, 2005.

    Google Scholar 

  • 19. M. Patan and D. Uciński. Configuring a sensor network for fault detection in distributed parameter systems. International Journal of Applied Mathematics and Computer Science, 18(4):513–524, 2008.

    Google Scholar 

  • 20. R. J. Patton, P. M. Frank, and R. N. Clark. Issues of fault diagnosis for dynamic systems. Springer Science & Business Media, 2013.

    Google Scholar 

  • 21. A. Pázman. Foundations of optimum experimental design, volume 14. Springer, 1986.

    Google Scholar 

  • 22. N. Point, A. V. Wouwer, and M. Remy. Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design. Control Engineering Practice, 4(11):1553–1562, 1996.

    Google Scholar 

  • 23. B. Porat and A. Nehorai. Localizing vapor-emitting sources by moving sensors. Signal Processing, IEEE Transactions on, 44(4):1018–1021, 1996.

    Google Scholar 

  • 24. E. Rafajłowicz. Optimum choice of moving sensor trajectories for distributed-parameter system identification. International Journal of Control, 43(5):1441–1451, 1986.

    Google Scholar 

  • 25. A. Romanek, M. Patan, and D. Kowalów. Decentralized scheduling of sensor networks for parameter estimation of spatio-temporal processes. Advanced and Intelligent Computations in Diagnosis and Control, 386:145, 2015.

    Google Scholar 

  • 26. Z. Song, Y. Chen, C. R. Sastry, and N. C. Tas. Optimal observation for cyber-physical systems: a fisher-information-matrix-based approach. Springer Science & Business Media, 2009.

    Google Scholar 

  • 27. C. Tricaud and Y. Chen. Optimal mobile sensing and actuation policies in cyber-physical systems. Springer Science & Business Media, 2011.

    Google Scholar 

  • 28. C. Tricaud, M. P. Dariusz, U. Yang, and Q. Chen. D-optimal trajectory design of heterogeneous mobile sensors for parameter estimation of distributed systems. In 2008 American Control Conference, pages 663–668. IEEE, 2008.

    Google Scholar 

  • 29. D. Uciński. Optimal selection of measurement locations for parameter estimation in distributed processes. International Journal of Applied Mathematics and Computer Science, 10(2):357–379, 2000.

    Google Scholar 

  • 30. D. Uciński. Optimal measurement methods for distributed parameter system identification. CRC Press, 2004.

    Google Scholar 

  • 31. D. Uciński. Sensor network scheduling for identification of spatially distributed processes. International Journal of Applied Mathematics and Computer Science, 22(1):25–40, 2012.

    Google Scholar 

  • 32. D. Uciński and M. Patan. Sensor network design for the estimation of spatially distributed processes. International Journal of Applied Mathematics and Computer Science, 20(3):459–481, 2010.

    Google Scholar 

  • 33. É. Walter and L. Pronzato. Qualitative and quantitative experiment design for phenomenological modelsa survey. Automatica, 26(2):195–213, 1990.

    Google Scholar 

  • 34. L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters, 53(1):65–78, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Kowalów .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kowalów, D., Patan, M. (2017). Distributed design of sensor network for abnormal state detection in distributed parameter systems. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics