Skip to main content

Solving Machine Part Cell Formation Problem Using Genetic Algorithm Based Evolutionary Computing

  • Conference paper
  • First Online:
Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016) (SoCPaR 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 614))

Included in the following conference series:

  • 1278 Accesses

Abstract

Machine part cell formation is the group technology problem, in which the parts with near similar machining requirements are grouped into part families and the corresponding machines into machine cells. In this paper, a genetic algorithm with a fine tuning procedure is proposed to solve the group technology problem considering only one process plan for each part. The grouping efficacy achieved by the proposed method is comparable to the existing methods in general and better for 11.42% of the datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyer, N., Wemmerlov, U.: Group technology in the US manufacturing industry: a survey of current practices. Int. J. Prod. Res. 27, 1287–1304 (1989)

    Article  Google Scholar 

  2. King, J.: Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. Int. J. Prod. Res. 18, 213–232 (1980)

    Article  Google Scholar 

  3. McAuley, J.: Machine grouping for efficient production. Int. J. Prod. Eng. 51, 53–57 (1972)

    Google Scholar 

  4. Kusiak, A.: The generalized group technology concept. Int. J. Prod. Res. 25, 561–569 (1987)

    Article  Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  6. Darwin, C.R.: On the Origin of Species by means of Natural Selection and The Descent of Man and Selection in Relation to Sex, 3 edn., vol. 49. Great Books of the Western World, Editor in chief: M. J. Adler. Robert P. Gwinn, Chicago, I.L (1991). (First edition John Murray, London (1859))

    Google Scholar 

  7. Brown, E.C., Sumichrast, R.T.: CF-GGA: a grouping genetic algorithm for the cell formation problem. Int. J. Prod. Res. 39, 3651–3669 (2001)

    Article  MATH  Google Scholar 

  8. Goncalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell formation. Comput. Ind. Eng. 47, 247–273 (2004)

    Article  Google Scholar 

  9. Car, Z., Mikac, T.: Evolutioary approach for solving cell-formation problem in cellular manufacturing. Adv. Eng. Inform. 20, 227–232 (2006)

    Article  Google Scholar 

  10. Mahapatra, S.S., Pandian, R.S.: Genetic cell formation using ratio level data in cellular manufacturing systems. Atonal J. Adv. Manufact. Technol. 38, 630–640 (2007)

    Article  Google Scholar 

  11. Mahdavi, I., Paydar, M.M., Solimanpur, M., Heidarzade, A.: Genetic algorithm approach for solving a cell formation problem in cellular manufacturing. Expert Syst. Appl. 36, 6598–6604 (2008)

    Article  Google Scholar 

  12. Tunnukij, T., Hicks, C.: An enhanced grouping genetic algorithm for solving the cell formation problem. Int. J. Prod. Res. 47, 1989–2007 (2009)

    Article  Google Scholar 

  13. Gupta, N.S., Devika, D.: A novel approach to machine-part cell formation using mahalanobis distance. Eur. J. Sci. Res. 62, 43–47 (2011)

    Google Scholar 

  14. Shiyas, C.R., Pillai, V.M.: Cellular manufacturing system design using grouping efficacy-based genetic algorithm. Int. J. Prod. Res. 52(12), 3504–3517 (2014)

    Article  Google Scholar 

  15. Kumar, K.R., Chandrasekaran, M.P.: A quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. Int. J. Prod. Res. 28, 233–243 (1990)

    Article  Google Scholar 

  16. Gupta, N.S., Devika, D., Valarmathi, B., Sowmiya, N., Shinde, A.: CARI – a heuristic approach to machine-part cell formation using correlation analysis and relevance index. Int. J. Prod. Res. 52(24), 7297–7309 (2014)

    Article  Google Scholar 

  17. King, J., Nakornchai, V.: Machine-component group formation in group technology: review and extension. Int. J. Prod. Res. 20, 17–133 (1982)

    Article  Google Scholar 

  18. Waghodekar, P.H., Sahu, S.: Machine-component cell formation in group technology: MACE. Int. J. Prod. Res. 22, 937–948 (1984)

    Article  Google Scholar 

  19. Seifoddini, H.: Single linkage versus average linkage clustering in machine cells formation applications. Comput. Ind. Eng. 16, 419–426 (1989)

    Article  Google Scholar 

  20. Kusiak, A.: Group technology. In: Kusiak, A. (ed.) Intelligent Design and Manufacturing, pp. 289–302. Wiley, New York (1992)

    Google Scholar 

  21. Kusiak, A., Chow, W.: Efficient solving of the group technology problem. J. Manufact. Syst. 6, 117–124 (1987)

    Article  Google Scholar 

  22. Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)

    Article  Google Scholar 

  23. Seifoddini, H., Wolfe, P.: Application of the similarity coefficient method in group technology. IIE Trans. 18, 271–277 (1986)

    Article  Google Scholar 

  24. Chandrasekharan, M.P., Rajagopalan, R.: An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. Int. J. Prod. Res. 24, 451–463 (1986)

    Article  MATH  Google Scholar 

  25. Chandrasekharan, M.P., Rajagopalan, R.: MODROC: an extension of rank order clustering for group technology. Int. J. Prod. Res. 24, 1221–1233 (1986)

    Article  Google Scholar 

  26. Mosier, C.T., Taube, L.: The facets of group technology and their impacts on implementation – a state-of-the-art survey. Omega. 13, 381–391 (1985)

    Article  Google Scholar 

  27. Ballakur, A., Steudel, H.: A within-cell utilization based heuristic for designing cellular manufacturing systems. Int. J. Prod. Res. 25, 639–665 (1987)

    Article  Google Scholar 

  28. Chan, H.M., Milner, D.A.: Direct clustering algorithm for group formation in cellular manufacture. J. Manufact. Sys. 1, 65–75 (1982)

    Article  Google Scholar 

  29. Askin, R.G., Subramanian, S.: A cost-based heuristic for group technology configuration. Int. J. Prod. Res. 25, 101–113 (1987)

    Article  Google Scholar 

  30. Stanfel, L.: Machine clustering for economic production. Engg. Costs and Prod. Eco. 9, 73–81 (1985)

    Article  Google Scholar 

  31. McCormick, W.T., Schweitzer, P.J., White, T.W.: Problem decomposition and data reorganization by a clustering technique. Oper. Res. 20, 993–1009 (1972)

    Article  MATH  Google Scholar 

  32. Srinivasan, G., Narendran, T.T., Mahadevan, B.: An assignment model for the part-families problem in group technology. Int. J. Prod. Res. 28, 145–152 (1990)

    Article  Google Scholar 

  33. King, J.: Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm. Int. J. Prod. Res. 18, 213–232 (1980)

    Article  Google Scholar 

  34. Carrie, A.S.: Numerical taxonomy applied to group technology and plant layout. Int. J. Prod. Res. 11, 399–416 (1973)

    Article  Google Scholar 

  35. Mosier, C.T., Taube, L.: Weighted similarity measure heuristics for the group technology machine clustering problem. Omega 13, 577–579 (1985b)

    Google Scholar 

  36. Kumar, K.R., Kusiak, A., Vannelli, A.: Grouping of parts and components in flexible manufacturing systems. Eur. J. Oper. Res. 24, 387–397 (1986)

    Article  MATH  Google Scholar 

  37. Boe, W., Cheng, C.H.: A close neighbour algorithm for designing cellular manufacturing systems. Int. J. Prod. Res. 29, 2097–2116 (1991)

    Article  MATH  Google Scholar 

  38. Chandrasekharan, M.P., Rajagopalan, R.: GROUPABILITY: an analysis of the properties of binary data matrices for group technology. Int. J. Prod. Res. 27, 1035–1052 (1989)

    Article  Google Scholar 

  39. Kumar, K.R., Vannelli, A.: Strategic subcontracting for efficient disaggregated manufacturing. Int. J. Prod. Res. 25, 1715–1728 (1987)

    Article  Google Scholar 

  40. Chandrasekharan, M.P., Rajagopalan, R.: ZODIAC - an algorithm for concurrent formation of part-families and machine-cells. Int. J. Prod. Res. 25, 835–850 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Srinivasa Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Sowmiya, N., Valarmathi, B., Srinivasa Gupta, N. (2018). Solving Machine Part Cell Formation Problem Using Genetic Algorithm Based Evolutionary Computing. In: Abraham, A., Cherukuri, A., Madureira, A., Muda, A. (eds) Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016). SoCPaR 2016. Advances in Intelligent Systems and Computing, vol 614. Springer, Cham. https://doi.org/10.1007/978-3-319-60618-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60618-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60617-0

  • Online ISBN: 978-3-319-60618-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics