Skip to main content

Constraints from Planets in Binaries

  • Chapter
  • First Online:
Formation, Evolution, and Dynamics of Young Solar Systems

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 445))

Abstract

In this chapter I will discuss how planets place powerful constraints on the formation and early evolution of binary star systems. In addition, these systems demonstrate extreme modes of planet formation that can inform models of our own Solar System. I begin with a very brief overview of the theoretical mechanisms for forming binaries and their planets. I will present as case studies two triple-star systems comprising at least one planet orbiting one of the stars. Combining the information from these studies reveals that (1) many binaries with periods of 10–100 s of days form in their current orbital configurations as part of the star formation process (2) the frequency of tertiary companions in close binary systems may be indicative of three body instabilities other than the Kozai-Lidov mechanism (3) planet formation can proceed in highly perturbed, truncated disks, (4) a reservoir of material beyond the ice line may not be required to instigate planet formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams, F.C., Ruden, S.P., Shu, F.H.: Eccentric gravitational instabilities in nearly Keplerian disks. Astrophys. J. 347, 959–976 (1989). doi:10.1086/168187

    Article  ADS  Google Scholar 

  • Akeson, R.L., Jensen, E.L.N.: Circumstellar disks around binary stars in Taurus. Astrophys. J. 784, 62 (2014). doi:10.1088/0004-637X/784/1/62, 1402.5363

    Google Scholar 

  • Anderson, K.R., Storch, N.I., Lai, D.: Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov-Kozai oscillations in stellar binaries. Mon. Not. R. Astron. Soc. 456, 3671–3701 (2016). doi:10.1093/mnras/stv2906, 1510.08918

    Google Scholar 

  • Armitage, P.J.: Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195–236 (2011). doi:10.1146/annurev-astro-081710-102521, 1011.1496

    Google Scholar 

  • Armitage, P.J., Bonnell, I.A.: The brown dwarf desert as a consequence of orbital migration. Mon. Not. R. Astron. Soc. 330, L11–L14 (2002). doi:10.1046/j.1365-8711.2002.05213.x, astro-ph/0112001

    Google Scholar 

  • Artymowicz, P., Lubow, S.H.: Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994). doi:10.1086/173679

    Google Scholar 

  • Bate, M.R.: Predicting the properties of binary stellar systems: the evolution of accreting protobinary systems. Mon. Not. R. Astron. Soc. 314, 33–53 (2000). doi:10.1046/j.1365-8711.2000.03333.x, astro-ph/0002143

    Google Scholar 

  • Bate, M.R.: Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012). doi:10.1111/j.1365-2966.2011.19955.x, 1110.1092

    Google Scholar 

  • Batygin, K.: A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491, 418–420 (2012). doi:10.1038/nature11560

    Article  ADS  Google Scholar 

  • Batygin, K., Morbidelli, A., Tsiganis, K.: Formation and evolution of planetary systems in presence of highly inclined stellar perturbers. Astron. Astrophys. 533, A7 (2011). doi:10.1051/0004-6361/201117193, 1106.4051

    Google Scholar 

  • Bonnell, I.A., Bate, M.R.: The formation of close binary systems. Mon. Not. R. Astron. Soc. 271 999–1004 (1994). doi:10.1093/mnras/271.4.999, astro-ph/9411081

    Google Scholar 

  • Chambers, J.E., Wetherill, G.W., Boss, A.P.: The stability of multi-planet systems. Icarus 119, 261–268 (1996). doi:10.1006/icar.1996.0019

    Article  ADS  Google Scholar 

  • Chatterjee, S., Tan, J.C.: Vulcan planets: inside-out formation of the innermost super-Earths. Astrophys. J. Lett. 798, L32 (2015). doi:10.1088/2041-8205/798/2/L32, 1411.2629

    Google Scholar 

  • Chen, X., Arce, H.G., Zhang, Q., Bourke, T.L., Launhardt, R., Jørgensen, J.K., Lee, C.F., Foster, J.B., Dunham, M.M., Pineda, J.E., Henning, T.: SMA observations of class 0 protostars: a high angular resolution survey of protostellar binary systems. Astrophys. J. 768, 110 (2013). doi:10.1088/0004-637X/768/2/110, 1304.0436

    Google Scholar 

  • Clarke, C.J., Pringle, J.E.: Star-disc interactions and binary star formation. Mon. Not. R. Astron. Soc. 249, 584–587 (1991). doi:10.1093/mnras/249.4.584

    Article  ADS  Google Scholar 

  • Coughlin, J.L., Mullally, F., Thompson, S.E., Rowe, J.F., Burke, C.J., Latham, D.W., Batalha, N.M., Ofir, A., Quarles, B.L., Henze, C.E., Wolfgang, A., Caldwell, D.A., Bryson, S.T., Shporer, A., Catanzarite, J., Akeson, R., Barclay, T., Borucki, W.J., Boyajian, T.S., Campbell, J.R., Christiansen, J.L., Girouard, F.R., Haas, M.R., Howell, S.B., Huber, D., Jenkins, J.M., Li, J., Patil-Sabale, A., Quintana, E.V., Ramirez, S., Seader, S., Smith, J.C., Tenenbaum, P., Twicken, J.D., Zamudio, K.A.: Planetary candidates observed by Kepler. VII. The first fully uniform catalog based on the entire 48-month data set (Q1-Q17 DR24). Astrophys. J. Suppl. Ser. 224, 12 (2016). doi:10.3847/0067-0049/224/1/12, 1512.06149

    Google Scholar 

  • Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., Orosz, J.A., Prčsa, A., Welsh, W.F., Quinn, S.N., Latham, D., Torres, G., Buchhave, L.A., Marcy, G.W., Fortney, J.J., Shporer, A., Ford, E.B., Lissauer, J.J., Ragozzine, D., Rucker, M., Batalha, N., Jenkins, J.M., Borucki, W.J., Koch, D., Middour, C.K., Hall, J.R., McCauliff, S., Fanelli, M.N., Quintana, E.V., Holman, M.J., Caldwell, D.A., Still, M., Stefanik, R.P., Brown, W.R., Esquerdo, G.A., Tang, S., Furesz, G., Geary, J.C., Berlind, P., Calkins, M.L., Short, D.R., Steffen, J.H., Sasselov, D., Dunham, E.W., Cochran, W.D., Boss, A., Haas, M.R., Buzasi, D., Fischer, D.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011). doi:10.1126/science.1210923, 1109.3432

    Google Scholar 

  • Duchêne, G., Kraus, A.: Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013). doi:10.1146/annurev-astro-081710-102602, 1303.3028

    Google Scholar 

  • Dupuy, T.J., Kratter, K.M., Kraus, A.L., Isaacson, H., Mann, A.W., Ireland, M.J., Howard, A.W., Huber, D.: Orbital architectures of planet-hosting binaries. I. Forming five small planets in the truncated disk of Kepler-444A. Astrophys. J. 817, 80 (2016). doi:10.3847/0004-637X/817/1/80, 1512.03428

    Google Scholar 

  • Eggenberger, A.: Detection and characterization of planets in binary and multiple systems. In: Gożdziewski, K., Niedzielski, A., Schneider, J. (eds.). EAS Publ. Ser. 42, 19–37 (2010). doi:10.1051/eas/1042002, 0910.3332

    Google Scholar 

  • Eggleton, P., Kiseleva, L.: An empirical condition for stability of hierarchical triple systems. Astrophys. J. 455, 640 (1995). doi:10.1086/176611

    Article  ADS  Google Scholar 

  • Fabrycky, D., Tremaine, S.: Shrinking binary and planetary orbits by kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007). doi:10.1086/521702, 0705.4285

    Google Scholar 

  • Fisher, R.T.: A turbulent interstellar medium origin of the binary period distribution. Astrophys. J. 600, 769–780 (2004). doi:10.1086/380111, astro-ph/0303280

    Google Scholar 

  • Fragner, M.M., Nelson, R.P., Kley, W.: On the dynamics and collisional growth of planetesimals in misaligned binary systems. Astron. Astrophys. 528, A40 (2011). doi:10.1051/0004-6361/201015378, 1104.1460

    Google Scholar 

  • Fu, W., Lubow, S.H., Martin, R.G.: The kozai-lidov mechanism in hydrodynamical disks. III. Effects of disk mass and self-gravity. Astrophys. J. 813, 105 (2015). doi:10.1088/0004-637X/813/2/105, 1509.01280

    Google Scholar 

  • Fu, W., Lubow, S.H., Martin, R.G.: Fragmentation of Kozai-Lidov disks. Astrophys. J. Lett. 835, L29 (2017). doi:10.3847/2041-8213/835/2/L29, 1612.07673

    Google Scholar 

  • Gammie, C.F., Goodman, J., Ogilvie, G.I.: Linear and non-linear theory of a parametric instability of hydrodynamic warps in Keplerian discs. Mon. Not. R. Astron. Soc. 318, 1005–1016 (2000). doi:10.1046/j.1365-8711.2000.03669.x, astro-ph/0001539

    Google Scholar 

  • Goodman, A.A., Benson, P.J., Fuller, G.A., Myers, P.C.: Dense cores in dark clouds. VIII - velocity gradients. Astrophys. J. 406, 528–547 (1993). doi:10.1086/172465

    Article  ADS  Google Scholar 

  • Hamers, A.S., Perets, H.B., Portegies Zwart, S.F.: A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. Mon. Not. R. Astron. Soc. 455, 3180–3200 (2016). doi:10.1093/mnras/stv2447, 1506.02039

    Google Scholar 

  • Harris, R.J., Andrews, S.M., Wilner, D.J., Kraus, A.L.: A resolved census of millimeter emission from Taurus multiple star systems. Astrophys. J. 751, 115 (2012). doi:10.1088/0004-637X/751/2/115, 1203.6353

    Google Scholar 

  • Hatzes, A.P., Cochran, W.D., Endl, M., McArthur, B., Paulson, D.B., Walker, G.A.H., Campbell, B., Yang, S.: A planetary companion to γ cephei A. Astrophys. J. 599, 1383–1394 (2003). doi:10.1086/379281, astro-ph/0305110

    Google Scholar 

  • Heppenheimer, T.A.: Outline of a theory of planet formation in binary systems. Icarus 22, 436–447 (1974). doi:10.1016/0019-1035(74)90076-1

    Article  ADS  Google Scholar 

  • Holman, M.J., Wiegert, P.A.: Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999). doi:10.1086/300695, astro-ph/9809315

    Google Scholar 

  • Innanen, K.A., Zheng, J.Q., Mikkola, S., Valtonen, M.J.: The kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915 (1997). doi:10.1086/118405

    Article  ADS  Google Scholar 

  • Kiseleva, L.G., Eggleton, P.P., Mikkola, S.: Tidal friction in triple stars. Mon. Not. R. Astron. Soc. 300, 292–302 (1998). doi:10.1046/j.1365-8711.1998.01903.x

    Article  ADS  Google Scholar 

  • Kley, W., Haghighipour, N.: Modeling circumbinary planets: the case of Kepler-38. Astron. Astrophys. 564, A72 (2014). doi:10.1051/0004-6361/201323235, 1401.7648

    Google Scholar 

  • Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012). doi:10.1146/annurev-astro-081811-125523, 1203.1184

    Google Scholar 

  • Kocsis, B., Haiman, Z., Loeb, A.: Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: application to supermassive black hole binaries. Mon. Not. R. Astron. Soc. 427, 2680–2700 (2012). doi:10.1111/j.1365-2966.2012.22118.x, 1205.5268

    Google Scholar 

  • Kostov, V.B., Orosz, J.A., Welsh, W.F., Doyle, L.R., Fabrycky, D.C., Haghighipour, N., Quarles, B., Short, D.R., Cochran, W.D., Endl, M., Ford, E.B., Gregorio, J., Hinse, T.C., Isaacson, H., Jenkins, J.M., Jensen, E.L.N., Kane, S., Kull, I., Latham, D.W., Lissauer, J.J., Marcy, G.W., Mazeh, T., Müller, T.W.A., Pepper, J., Quinn, S.N., Ragozzine, D., Shporer, A., Steffen, J.H., Torres, G., Windmiller, G., Borucki, W.J.: Kepler-1647b: the largest and longest-period kepler transiting circumbinary planet. Astrophys. J. 827, 86 (2016). doi:10.3847/0004-637X/827/1/86, 1512.00189

    Google Scholar 

  • Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962). doi:10.1086/108790

    Article  ADS  MathSciNet  Google Scholar 

  • Kratter, K.M.: The formation of close binaries. In: Schmidtobreick, L., Schreiber, M.R., Tappert, C. (eds.) Evolution of Compact Binaries, Astronomical Society of the Pacific Conference Series, vol. 447, p. 47 (2011). 1109.3740

    Google Scholar 

  • Kratter, K., Lodato, G.: Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016). doi:10.1146/annurev-astro-081915-023307, 1603.01280

    Google Scholar 

  • Kratter, K.M., Matzner, C.D.: Fragmentation of massive protostellar discs. Mon. Not. R. Astron. Soc., 373, 1563–1576 (2006). doi:10.1111/j.1365-2966.2006.11103.x, astro-ph/0609692

    Google Scholar 

  • Kratter, K.M., Shannon, A.: Planet packing in circumbinary systems. Mon. Not. R. Astron. Soc. 437, 3727–3735 (2014). doi:10.1093/mnras/stt2179, 1311.2942

    Google Scholar 

  • Kratter, K.M., Matzner, C.D., Krumholz, M.R.: Global models for the evolution of embedded, accreting protostellar disks. Astrophys. J. 681, 375–390 (2008). doi:10.1086/587543, 0709.4252

    Google Scholar 

  • Kratter, K.M., Matzner, C.D., Krumholz, M.R., Klein, R.I.: On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010). doi:10.1088/0004-637X/708/2/1585, 0907.3476

    Google Scholar 

  • Kraus, A.L., Ireland, M.J., Huber, D., Mann, A.W., Dupuy, T.J.: The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016). doi:10.3847/0004-6256/152/1/8, 1604.05744

    Google Scholar 

  • Krumholz, M.R., Thompson, T.A.: Mass transfer in close, rapidly accreting protobinaries: an origin for massive twins? Astrophys. J. 661, 1034–1041 (2007). doi:10.1086/515566, astro-ph/0611822

    Google Scholar 

  • Krumholz, M.R., Klein, R.I., McKee, C.F.: Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores. Astrophys. J. 656, 959–979 (2007). doi:10.1086/510664, astro-ph/0609798

    Google Scholar 

  • Larwood, J.D., Nelson, R.P., Papaloizou, J.C.B., Terquem, C.: The tidally induced warping, precession and truncation of accretion discs in binary systems: three-dimensional simulations. Mon. Not. R. Astron. Soc. 282, 597–613 (1996). doi:10.1093/mnras/282.2.597, astro-ph/9604013

    Google Scholar 

  • Li, Z.-Y., Banerjee, R., Pudritz, R.E., Jørgensen, J.K., Shang, H., Krasnopolsky, R., Maury, A.: The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows. In: Protostars and Planets VI, pp. 173–194. University of Arizona Press, Tucson, AZ (2014). doi:10.2458/azu_uapress_9780816531240-ch008, 1401.2219

    Google Scholar 

  • Li, G., Holman, M.J., Tao, M.: Uncovering circumbinary planetary architectural properties from selection biases. Astrophys. J. 831, 96 (2016). doi:10.3847/0004-637X/831/1/96, 1608.01768

    Google Scholar 

  • Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962). doi:10.1016/0032-0633(62)90129-0

    Article  ADS  Google Scholar 

  • Lodato, G., Nayakshin, S., King, A.R., Pringle, J.E.: Black hole mergers: can gas discs solve the ‘final parsec’ problem? Mon. Not. R. Astron. Soc. 398, 1392–1402 (2009). doi:10.1111/j.1365-2966.2009.15179.x, 0906.0737

    Google Scholar 

  • Lubow, S., Artymowicz, P.: Young binary star/disk interactions. In: AAS/Division of Dynamical Astronomy Meeting #27, Bulletin of the American Astronomical Society, vol. 28, p. 1182 (1996)

    Google Scholar 

  • Lubow, S.H., Martin, R.G.: The evolution of planet-disk systems that are mildly inclined to the orbit of a binary companion. Astrophys. J. 817, 30 (2016). doi:10.3847/0004-637X/817/1/30, 1512.02141

    Google Scholar 

  • Lubow, S.H., Ogilvie, G.I.: On the tilting of protostellar disks by resonant tidal effects. Astrophys. J. 538, 326–340 (2000). doi:10.1086/309101, astro-ph/0003028

    Google Scholar 

  • Lubow, S.H., Martin, R.G., Nixon, C.: Tidal torques on misaligned disks in binary systems. Astrophys. J. 800, 96 (2015). doi:10.1088/0004-637X/800/2/96, 1412.7741

    Google Scholar 

  • Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010). doi:10.1038/nature09684, 1011.4918

    Google Scholar 

  • Martin, R.G., Armitage, P.J., Alexander, R.D.: Formation of circumbinary planets in a dead zone. Astrophys. J. 773, 74 (2013). doi:10.1088/0004-637X/773/1/74, 1306.5241

    Google Scholar 

  • Martin, R.G., Nixon, C., Lubow, S.H., Armitage, P.J., Price, D.J., Doğan, S., King, A.: The kozai-lidov mechanism in hydrodynamical disks. Astrophys. J. Lett. 792, L33 (2014). doi:10.1088/2041-8205/792/2/L33, 1409.1226

    Google Scholar 

  • Martin, D.V., Mazeh, T., Fabrycky, D.C.: No circumbinary planets transiting the tightest Kepler binaries - a possible fingerprint of a third star. Mon. Not. R. Astron. Soc. 453, 3554–3567 (2015). doi:10.1093/mnras/stv1870, 1505.05749

    Google Scholar 

  • Marzari, F., Nelson, A.F.: Interaction of a giant planet in an inclined orbit with a circumstellar disk. Astrophys. J. 705, 1575–1583 (2009). doi:10.1088/0004-637X/705/2/1575, 0909.4375

    Google Scholar 

  • Marzari, F., Scholl, H.: Planetesimal accretion in binary star systems. Astrophys. J. 543, 328–339 (2000). doi:10.1086/317091

    Article  ADS  Google Scholar 

  • Marzari, F., Thébault, P., Scholl, H.: Planet formation in highly inclined binaries. Astron. Astrophys. 507, 505–511 (2009). doi:10.1051/0004-6361/200912379, 0908.0803

    Google Scholar 

  • Mazeh, T., Shaham, J.: The orbital evolution of close triple systems - the binary eccentricity. Astron. Astrophys. 77, 145–151 (1979)

    ADS  Google Scholar 

  • Meru, F.: Triggered fragmentation in self-gravitating discs: forming fragments at small radii. Mon. Not. R. Astron. Soc. 454, 2529–2538 (2015). doi:10.1093/mnras/stv2128, 1509.03635

    Google Scholar 

  • Moe, M., Di Stefano, R.: Mind your Ps and Qs: the interrelation between Period (P) and Mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017). doi:10.3847/1538-4365/aa6fb6, 1606.05347

    Google Scholar 

  • Moe, M., Kratter, K.M.: Dynamical formation of close binaries during the pre-main-sequence phase. Astrophys. J. 21 pp. http://adsabs.harvard.edu/abs/2017arXiv170609894M

  • Mohanty, S., Ercolano, B., Turner, N.J.: Dead, undead, and zombie zones in protostellar disks as a function of stellar mass. Astrophys. J. 764, 65 (2013). doi:10.1088/0004-637X/764/1/65, 1212.3798

    Google Scholar 

  • Moriwaki, K., Nakagawa, Y.: A planetesimal accretion zone in a circumbinary disk. Astrophys. J. 609, 1065–1070 (2004). doi:10.1086/421342

    Article  ADS  Google Scholar 

  • Morrison, S.J., Kratter, K.M.: Orbital stability of multi-planet systems: behavior at high masses. Astrophys. J. 823, 118 (2016). doi:10.3847/0004-637X/823/2/118, 1604.01037

    Google Scholar 

  • Muñoz, D.J., Lai, D.: Survival of planets around shrinking stellar binaries. Proc. Natl. Acad. Sci. 112, 9264–9269 (2015). doi:10.1073/pnas.1505671112, 1505.05514

    Google Scholar 

  • Muñoz, D.J., Kratter, K., Vogelsberger, M., Hernquist, L., Springel, V.: Stellar orbit evolution in close circumstellar disc encounters. Mon. Not. R. Astron. Soc. 446, 2010–2029 (2015). doi:10.1093/mnras/stu2220, 1410.4561

    Google Scholar 

  • Mudryk, L.R., Wu, Y.: Resonance overlap is responsible for ejecting planets in binary systems. Astrophys. J. 639, 423–431 (2006). doi:10.1086/499347, astro-ph/0511710

    Google Scholar 

  • Najita, J.R., Kenyon, S.J.: The mass budget of planet-forming discs: isolating the epoch of planetesimal formation. Mon. Not. R. Astron. Soc. 445, 3315–3329 (2014). doi:10.1093/mnras/stu1994, 1409.7021

    Google Scholar 

  • Naoz, S.: The eccentric kozai-lidov effect and its applications. Annu. Rev. Astron. Astrophys. 54, 441–489 (2016). doi:10.1146/annurev-astro-081915-023315, 1601.07175

    Google Scholar 

  • Nielsen, EL., De Rosa, RJ., Rameau, J., Wang, JJ., Esposito, T.M., Millar-Blanchaer, M.A., Marois, C., Vigan, A., Ammons, S.M., et al.: Evidence that the directly-imaged planet HD 131399 Ab is a background star. Astrophys. J. (2017). arXiv:1705.06851. http://adsabs.harvard.edu/abs/2017arXiv170506851N

  • Nixon, C.J., Cossins, P.J., King, A.R., Pringle, J.E.: Retrograde accretion and merging supermassive black holes. Mon. Not. R. Astron. Soc. 412, 1591–1598 (2011). doi:10.1111/j.1365-2966.2010.17952.x, 1011.1914

    Google Scholar 

  • Offner, S.S.R., Kratter, K.M., Matzner, C.D., Krumholz, M.R., Klein, R.I.: The formation of low-mass binary star systems via turbulent fragmentation. Astrophys. J. 725, 1485–1494 (2010). doi:10.1088/0004-637X/725/2/1485, 1010.3702

    Google Scholar 

  • Offner, S.S.R., Dunham, M.M., Lee, K.I., Arce, H.G., Fielding, D.B.: The turbulent origin of outflow and spin misalignment in multiple star systems. Astrophys. J. Lett. 827, L11 (2016). doi:10.3847/2041-8205/827/1/L11, 1606.08445

    Google Scholar 

  • Ogilvie, G.I., Barker, A.J.: Local and global dynamics of eccentric astrophysical discs. Mon. Not. R. Astron. Soc. 445, 2621–2636 (2014). doi:10.1093/mnras/stu1795, 1409.6487

    Google Scholar 

  • Perets, H.B., Kratter, K.M.: The triple evolution dynamical instability: stellar collisions in the field and the formation of exotic binaries. Astrophys. J. 760, 99 (2012). doi:10.1088/0004-637X/760/2/99, 1203.2914

    Google Scholar 

  • Pineda, J.E., Offner, S.S.R., Parker, R.J., Arce, H.G., Goodman, A.A., Caselli, P., Fuller, G.A., Bourke, T.L., Corder, S.A.: The formation of a quadruple star system with wide separation. Nature 518, 213–215 (2015). doi:10.1038/nature14166

    Article  ADS  Google Scholar 

  • Rabl, G., Dvorak, R.: Satellite-type planetary orbits in double stars - a numerical approach. Astron. Astrophys. 191, 385–391 (1988)

    ADS  Google Scholar 

  • Rafikov, R.R.: Building tatooine: suppression of the direct secular excitation in kepler circumbinary planet formation. Astrophys. J. Lett. 764, L16 (2013a). doi:10.1088/2041-8205/764/1/L16, 1212.2217

    Google Scholar 

  • Rafikov, R.R.: Structure and evolution of circumbinary disks around supermassive black hole binaries. Astrophys. J. 774, 144 (2013b). doi:10.1088/0004-637X/774/2/144, 1205.5017

    Google Scholar 

  • Rafikov, R.R., Silsbee, K.: Planet formation in stellar binaries. I. Planetesimal dynamics in massive protoplanetary disks. Astrophys. J. 798, 69 (2015a). doi:10.1088/0004-637X/798/2/69, 1405.7054

    Google Scholar 

  • Rafikov, R.R., Silsbee, K.: Planet formation in stellar binaries. II. Overcoming the fragmentation barrier in α centauri and γ cephei-like systems. Astrophys. J. 798, 70 (2015b). doi:10.1088/0004-637X/798/2/70, 1408.4819

    Google Scholar 

  • Raghavan, D., McAlister, H.A., Henry, T.J., Latham, D.W., Marcy, G.W., Mason, B.D., Gies, D.R., White, R.J., ten Brummelaar, T.A.: A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010). doi:10.1088/0067-0049/190/1/1, 1007.0414

    Google Scholar 

  • Reipurth, B., Clarke, C.: The formation of brown dwarfs as ejected stellar embryos. Astron. J. 122, 432–439 (2001). doi:10.1086/321121, astro-ph/0103019

    Google Scholar 

  • Rodriguez, D.R., Duchêne, G., Tom, H., Kennedy, G.M., Matthews, B., Greaves, J., Butner, H.: Stellar multiplicity and debris discs: an unbiased sample. Mon. Not. R. Astron. Soc. 449, 3160–3170 (2015). doi:10.1093/mnras/stv483, 1503.01320

    Google Scholar 

  • Silsbee, K., Rafikov, R.R.: Birth locations of the Kepler circumbinary planets. Astrophys. J. 808, 58 (2015a). doi:10.1088/0004-637X/808/1/58, 1504.00460

    Google Scholar 

  • Silsbee, K., Rafikov, R.R.: Planet formation in binaries: dynamics of planetesimals perturbed by the eccentric protoplanetary disk and the secondary. Astrophys. J. 798, 71 (2015b). doi:10.1088/0004-637X/798/2/71, 1309.3290

    Google Scholar 

  • Simon, J.B., Armitage, P.J., Li, R., Youdin, A.N.: The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016). doi:10.3847/0004-637X/822/1/55, 1512.00009

    Google Scholar 

  • Smith, A.W., Lissauer, J.J.: Orbital stability of systems of closely-spaced planets. Icarus 201, 381–394 (2009). doi:10.1016/j.icarus.2008.12.027

    Article  ADS  Google Scholar 

  • Smullen, R.A., Kratter, K.M., Shannon, A.: Planet scattering around binaries: ejections, not collisions. Mon. Not. R. Astron. Soc. 461, 1288–1301 (2016). doi:10.1093/mnras/stw1347, 1604.03121

    Google Scholar 

  • Sutherland, A.P., Fabrycky, D.C.: On the fate of unstable circumbinary planets: Tatooine’s close encounters with a death star. Astrophys. J. 818, 6 (2016). doi:10.3847/0004-637X/818/1/6, 1511.03274

    Google Scholar 

  • Syer, D., Clarke, C.J.: Satellites in discs: regulating the accretion luminosity. Mon. Not. R. Astron. Soc. 277, 758–766 (1995). doi:10.1093/mnras/277.3.758, astro-ph/9505021

    Google Scholar 

  • Throop, H.B., Bally, J.: Tail-end bondi-hoyle accretion in young star clusters: implications for disks, planets, and stars. Astron. J. 135, 2380–2397 (2008). doi:10.1088/0004-6256/135/6/2380, 0804.0438

    Google Scholar 

  • Tobin, J.J., Looney, L.W., Wilner, D.J., Kwon, W., Chandler, C.J., Bourke, T.L., Loinard, L., Chiang, H.F., Schnee, S., Chen, X.: A sub-arcsecond survey toward class 0 protostars in perseus: searching for signatures of protostellar disks. Astrophys. J. 805, 125 (2015). doi:10.1088/0004-637X/805/2/125, 1503.05189

    Google Scholar 

  • Tobin, J.J., Kratter, K.M., Persson, M.V., Looney, L.W., Dunham, M.M., Segura-Cox, D., Li, Z.Y., Chandler, C.J., Sadavoy, S.I., Harris, R.J., Melis, C., Pérez, L.M.: A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538, 483–486 (2016a). doi:10.1038/nature20094, 1610.08524

    Google Scholar 

  • Tobin, J.J., Looney, L.W., Li, Z.Y., Chandler, C.J., Dunham, M.M., Segura-Cox, D., Sadavoy, S.I., Melis, C., Harris, R.J., Kratter, K., Perez, L.: The VLA nascent disk and multiplicity survey of perseus protostars (VANDAM). II. Multiplicity of protostars in the perseus molecular cloud. Astrophys. J. 818, 73 (2016b). doi:10.3847/0004-637X/818/1/73, 1601.00692

    Google Scholar 

  • Tohline, J.E.: The origin of binary stars. Annu. Rev. Astron. Astrophys. 40, 349–385 (2002). doi:10.1146/annurev.astro.40.060401.093810

    Article  ADS  Google Scholar 

  • Tokovinin, A.: From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs. Astron. J. 147, 87 (2014). doi:10.1088/0004-6256/147/4/87, 1401.6827

    Google Scholar 

  • Trilling, D.E., Stansberry, J.A., Stapelfeldt, K.R., Rieke, G.H., Su, K.Y.L., Gray, R.O., Corbally, C.J., Bryden, G., Chen, C.H., Boden, A., Beichman, C.A.: Debris disks in main-sequence binary systems. Astrophys. J. 658, 1289–1311 (2007). doi:10.1086/511668, astro-ph/0612029

    Google Scholar 

  • Vartanyan, D., Garmilla, J.A., Rafikov, R.R.: Tatooine nurseries: structure and evolution of circumbinary protoplanetary disks. Astrophys. J. 816, 94 (2016). doi:10.3847/0004-637X/816/2/94, 1509.07524

    Google Scholar 

  • Veras, D., Mustill, A.J., Gänsicke, B.T.: The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system. Mon. Not. R. Astron. Soc. 465, 1499–1504 (2017). doi:10.1093/mnras/stw2821, 1611.00007

    Google Scholar 

  • Wagner, K., Apai, D., Kasper, M., Kratter, K., McClure, M., Robberto, M., Beuzit, J.L.: Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science 353, 673–678 (2016). doi:10.1126/science.aaf9671, 1607.02525

    Google Scholar 

  • Wang, J., Xie, J.-W., Barclay, T., Fischer, D.A.: Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. Astrophys. J. 783, 4 2014. doi:10.1088/0004-637X/783/1/4, 1309.7097

    Google Scholar 

  • Wang, J., Fischer, D.A., Horch, E.P., Xie, J.W.: Influence of stellar multiplicity on planet formation. III. Adaptive optics imaging of Kepler stars with gas giant planets. Astrophys. J. 806, 248 (2015). doi:10.1088/0004-637X/806/2/248, 1505.05363

    Google Scholar 

  • Welsh, W.F., Orosz, J.A., Carter, J.A., Fabrycky, D.C.: Recent Kepler results on circumbinary planets. In: Haghighipour, N. (ed.) Formation, Detection, and Characterization of Extrasolar Habitable Planets, IAU Symposium, vol. 293, pp. 125–132 (2014). doi:10.1017/S1743921313012684, 1308.6328

    Google Scholar 

  • Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011). doi:10.1146/annurev-astro-081710-102548, 1103.0556

    Google Scholar 

  • Williams, J.P., Mann, R.K., Di Francesco, J., Andrews, S.M., Hughes, A.M., Ricci, L., Bally, J., Johnstone, D., Matthews, B.: ALMA observations of a misaligned binary protoplanetary disk system in orion. Astrophys. J. 796, 120 (2014). doi:10.1088/0004-637X/796/2/120, 1410.3570

    Google Scholar 

  • Youdin, A.N., Chiang, E.I.: Particle pileups and planetesimal formation. Astrophys. J. 601, 1109–1119 (2004). doi:10.1086/379368, astro-ph/0309247

    Google Scholar 

  • Youdin, A.N., Goodman, J.: Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005). doi:10.1086/426895, astro-ph/0409263

    Google Scholar 

  • Youdin, A.N., Kenyon, S.J.: From Disks to Planets, p. 1. Springer, Dordrecht(2013). doi:10.1007/978-94-007-5606-9_1

    Google Scholar 

Download references

Acknowledgements

KMK is supported by the National Science Foundation under Grant No. AST-1410174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaitlin M. Kratter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kratter, K.M. (2017). Constraints from Planets in Binaries. In: Pessah, M., Gressel, O. (eds) Formation, Evolution, and Dynamics of Young Solar Systems. Astrophysics and Space Science Library, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-60609-5_11

Download citation

Publish with us

Policies and ethics