Skip to main content

Biofabrication Technologies for Developing In Vitro Tumor Models

  • Chapter
  • First Online:
Tumor Organoids

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Despite having yielded extensive breakthroughs in cancer research, traditional 2D cell cultures have limitations in studying cancer progression and metastasis and screening therapeutic candidates. 3D systems can allow cells to grow, migrate, and interact with each other and the surrounding matrix, resulting in more realistic constructs. Furthermore, interactions between host tissue and developing tumors influence the susceptibility of tumors to drug treatments. The past decade has seen a rapid advancement of the application of 3D cellular systems to cancer research. These 3D tumor models, or tumor organoids, occupy a range of distinct form factors, each with their own strengths and weaknesses, and appropriateness for particular applications. In this chapter we highlight the major categories of tumor organoids and the methods by which they are biofabricated, aiming to provide the reader with an overview of the types of tumor organoids currently employed in cancer research applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME (2011) Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6:e20887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285

    Article  CAS  PubMed  Google Scholar 

  3. Ho WJ et al (2010) Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci 101:2637–2643

    Article  CAS  PubMed  Google Scholar 

  4. Drewitz M et al (2011) Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol J 6:1488–1496

    Article  CAS  PubMed  Google Scholar 

  5. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S (2015) Liver-tumor hybrid Organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng 43:2361–2373

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirschhaeuser F et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15

    Article  CAS  PubMed  Google Scholar 

  8. Torisawa YS, Takagi A, Shiku H, Yasukawa T, Matsue TA (2005) Multicellular spheroid-based drug sensitivity test by scanning electrochemical microscopy. Oncol Rep 13:1107–1112

    CAS  PubMed  Google Scholar 

  9. Kelm JM, Fussenegger M (2004) Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol 22:195–202

    Article  CAS  PubMed  Google Scholar 

  10. Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3:1172–1184

    Article  CAS  PubMed  Google Scholar 

  11. Amann A et al (2014) Development of an innovative 3D cell culture system to study tumour–stroma interactions in non-small cell lung cancer cells. PLoS One 9:e92511

    Article  PubMed  PubMed Central  Google Scholar 

  12. Messner S, Agarkova I, Moritz W, Kelm JM (2013) Multi-cell type human liver microtissues for hepatotoxicity testing. Arch Toxicol 87:209–213

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov DP et al (2014) Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS One 9:e103817

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barrila J et al (2010) Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol 8:791–801

    Article  CAS  PubMed  Google Scholar 

  15. Carterson AJ et al (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas Aeruginosa pathogenesis. Infect Immun 73:1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Honer zu Bentrup K et al (2006) Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect 8:1813–1825

    Article  PubMed  Google Scholar 

  17. Nickerson CA, Ott CM (2004) A new dimension in modeling infectious disease. ASM News 70:169–175

    Google Scholar 

  18. Nickerson CA, Richter EG, Ott CM (2007) Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J Neuroimmune Pharmacol 2:26–31

    Article  PubMed  Google Scholar 

  19. Skardal A, Sarker SF, Crabbe A, Nickerson CA, Prestwich GD (2010) The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31:8426–8435

    Article  CAS  PubMed  Google Scholar 

  20. Barrila J et al (2010) 3-D cell culture models: innovative and predictive platforms for studying human disease pathways and drug design. Nat Rev Microbiol 8:791–801

    Article  CAS  PubMed  Google Scholar 

  21. Hjelm BE, Berta AN, Nickerson CA, Arntzen CJ, Herbst-Kralovetz MM (2010) Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 82:617–627

    Article  CAS  PubMed  Google Scholar 

  22. Nickerson CA et al (2001) Three-dimensional tissue assemblies: novel models for the study of salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 69:7106–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181

    Article  CAS  PubMed  Google Scholar 

  24. Serban MA, Prestwich GD (2008) Modular extracellular matrices: solutions for the puzzle. Methods 45:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Skardal A, Devarasetty M, Forsythe SD, Atala A, Soker S (2016) A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng 113(9):2020–2032

    Article  CAS  PubMed  Google Scholar 

  26. Fidler IJ, Kim SJ, Langley RR (2007) The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem 101:927–936

    Article  CAS  PubMed  Google Scholar 

  27. Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321

    Article  CAS  PubMed  Google Scholar 

  28. Majidinia M, Yousefi B (2017) Breast tumor stroma: a driving force in the development of resistance to therapies. Chem Biol Drug Des 89(3):309–318

    Article  CAS  PubMed  Google Scholar 

  29. Dauer P, Nomura A, Saluja A, Banerjee S (2017) Microenvironment in determining chemo-resistance in pancreatic cancer: neighborhood matters. Pancreatology 17:7–12

    Article  CAS  PubMed  Google Scholar 

  30. Bar-Natan M et al (2017) Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein MUC1. Br J Haematol 176(6):929–938

    Article  CAS  PubMed  Google Scholar 

  31. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    Article  CAS  PubMed  Google Scholar 

  32. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3:93–103

    Article  CAS  PubMed  Google Scholar 

  33. Mironov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prestwich GD (2007) Organ printing. Chem Biol 2:B33–B40

    Google Scholar 

  35. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  36. Visconti RP et al (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10:409–420

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fedorovich NE et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13:1905–1925

    Article  CAS  PubMed  Google Scholar 

  38. Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR (2003) Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 272:497–502

    Article  PubMed  Google Scholar 

  39. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926

    Article  CAS  PubMed  Google Scholar 

  40. Catros S et al (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3:025001

    Article  PubMed  Google Scholar 

  41. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190

    Article  CAS  PubMed  Google Scholar 

  42. Bohandy J, Kim B, Adrian F (1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60:1538

    Article  CAS  Google Scholar 

  43. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (2004) Application of laser printing to mammalian cells. Thin Solid Films 453:383–387

    Article  Google Scholar 

  44. Chrisey DB (2000) MATERIALS PROCESSING: the power of direct writing. Science 289:879–881

    Article  CAS  PubMed  Google Scholar 

  45. Colina M, Serra P, Fernandez-Pradas JM, Sevilla L, Morenza JL (2005) DNA deposition through laser induced forward transfer. Biosens Bioelectron 20:1638–1642

    Article  CAS  PubMed  Google Scholar 

  46. Dinca V et al (2008) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8:538–543

    Article  CAS  PubMed  Google Scholar 

  47. Guillotin B et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  CAS  PubMed  Google Scholar 

  48. Holzl K et al (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8:032002

    Article  PubMed  Google Scholar 

  49. Skardal A, Atala A (2015) Biomaterials for integration with 3-d bioprinting. Ann Biomed Eng 43:730–746

    Article  PubMed  Google Scholar 

  50. Li J, Chen M, Fan X, Zhou H (2016) Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 14:271

    Article  PubMed  PubMed Central  Google Scholar 

  51. Malda J et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028

    Article  CAS  PubMed  Google Scholar 

  52. Zhang YS et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Skardal A et al (2015) A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 25:24–34

    Article  CAS  PubMed  Google Scholar 

  54. Skardal A et al (2016) Bioprinting Cellularized constructs using a tissue-specific hydrogel Bioink. J Vis Exp (110):e53606

    Google Scholar 

  55. Xu F et al (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6:204–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai X, Ma C, Lan Q, Xu T (2016) 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8:045005

    Article  PubMed  Google Scholar 

  57. Tran NH et al (2015) Precision medicine in colorectal cancer: the molecular profile alters treatment strategies. Ther Adv Med Oncol 7:252–262

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bhise NS et al (2014) Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 190:82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Skardal A et al (2016) A tunable hydrogel system for long-term release of cell-secreted cytokines and bioprinted in situ wound cell delivery. J Biomed Mater Res B Appl Biomater

    Google Scholar 

  61. Skardal A et al (2012) Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 33:4565–4575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 7(3–4):173–181

    Article  Google Scholar 

  64. Skardal A, Devarasetty M, Soker S, Hall AR (2015) In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication 7:031001

    Article  PubMed  Google Scholar 

  65. Phan DT et al (2017) A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17:511–520

    Article  CAS  PubMed  Google Scholar 

  66. Skardal A, Shupe T, Atala A (2016) Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 21:1399–1411

    Article  CAS  PubMed  Google Scholar 

  67. Bersini S et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:2454–2461

    Article  CAS  PubMed  Google Scholar 

  68. Bersini S, Jeon JS, Moretti M, Kamm RD (2014) In vitro models of the metastatic cascade: from local invasion to extravasation. Drug Discov Today 19:735–742

    Article  CAS  PubMed  Google Scholar 

  69. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111:2447–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Niu Y, Bai J, Kamm RD, Wang Y, Wang C (2014) Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Mol Pharm 11:2022–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD (2015) A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15:301–310

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karakiulakis G et al (1997) Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion Metastasis 17:158–168

    CAS  PubMed  Google Scholar 

  73. Franci C et al (2013) Biomarkers of residual disease, disseminated tumor cells, and metastases in the MMTV-PyMT breast cancer model. PLoS One 8:e58183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glade Bender J, Verma A, Schiffman JD (2015) Translating genomic discoveries to the clinic in pediatric oncology. Curr Opin Pediatr 27:34–43

    Article  PubMed  Google Scholar 

  75. Andre F et al (2014) Prioritizing targets for precision cancer medicine. Ann Oncol: official journal of the European Society for Medical Oncology / ESMO 25:2295–2303

    Article  CAS  Google Scholar 

  76. Roychowdhury S, Chinnaiyan AM (2014) Translating genomics for precision cancer medicine. Annu Rev Genomics Hum Genet 15:395–415

    Article  CAS  PubMed  Google Scholar 

  77. Hayes DF, Schott AF (2015) Personalized medicine: genomics trials in oncology. Trans Am Clin Climatol Assoc 126:133–143

    PubMed  PubMed Central  Google Scholar 

  78. Cantrell MA, Kuo CJ (2015) Organoid modeling for cancer precision medicine. Genome Med 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao D et al (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Skardal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mazzocchi, A., Soker, S., Skardal, A. (2018). Biofabrication Technologies for Developing In Vitro Tumor Models. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics