Skip to main content

Practical Techniques for Securing the Internet of Things (IoT) Against Side Channel Attacks

  • Chapter
  • First Online:
Internet of Things and Big Data Analytics Toward Next-Generation Intelligence

Part of the book series: Studies in Big Data ((SBD,volume 30))

Abstract

As a global infrastructure with the aim of enabling objects to communicate with each other, the Internet of Things (IoT) is being widely used and applied to many critical applications. While that is true, it should be pointed out that the introduction of IoT could also expose Information Communication and Technology (ICT) environments to new security threats such as side channel attacks due to increased openness. Side-channel analysis is known to be a serious threat to embedded devices. Side-channel analysis or power analysis attempts to expose devices cryptographic keys through the evaluation of leakage information that emanates from a physical implementation. In the work presented herein, it is shown that a skilful attacker can take advantage of side channel analysis to break a 3DES implementation on an FPGA platform. Because of the threats posed by side channel analysis to ICT systems in general and IoT in particular, counter attack mechanisms in the form of leakage reduction techniques applicable to CMOS devices are proposed and evaluated. The modelling results revealed that building CMOS devices with high-κ dielectrics or adding strain in silicon during the device fabrication could help drastically reduce leakages in CMOS devices and therefore assist in designing more effective countermeasures for side channel analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biggs, P., Garrity, J., Lasalle, C., & Polomska, A. (2015). Harnessing the internet of things for global development: ITU/UNESCO broadband commission for sustainable development.

    Google Scholar 

  2. Houlin, Z. (2016). Harnessing the Internet of things for global development. White paper. Available from http://theinternetofthings.report/view-resource.aspx?id=2574

  3. Subrata, N., et al. (2014). Cellular automata based encrypted ECG-hash code generation: An application in inter-human biometric authentication system. International Journal of Computer Network and Information Security.

    Google Scholar 

  4. Shubhendu, B., et al. (2015). High Payload watermarking using residue number system. International Journal of Computer Network and Information Security.

    Google Scholar 

  5. Wright, D. (1987). Spy catcher. Viking Penguin Inc.

    Google Scholar 

  6. Nilanjan, D., et al. (2017). Watermarking in biomedical signal processing: Intelligent techniques in signal processing for multimedia security. New York: Springer.

    Google Scholar 

  7. Chakraborty, S., et al. (2017). Comparative approach between singular value decomposition and randomized singular value decomposition-based watermarking. In Intelligent techniques in signal processing for multimedia security. New York: Springer.

    Google Scholar 

  8. Dharavath, K., et al. (2017). Face recognition under dry and wet face conditions. In Intelligent techniques in signal processing for multimedia security. New York, NY: Springer.

    Google Scholar 

  9. Surekha, B., et al. (2017). Attendance recording system using partial face recognition algorithm. In Intelligent techniques in signal processing for multimedia security. New York, NY: Springer.

    Google Scholar 

  10. Rajeswari, P. (2017). Multi-fingerprint unimodal-based biometric authentication supporting cloud computing. In Intelligent techniques in signal processing for multimedia security. New York, NY: Springer.

    Google Scholar 

  11. Anderson, M. (2016). Vulnerable smart devices make an internet of insecure things: IEEE spectrum. http://spectrum.ieee.org/riskfactor/computing/networks/vulnerable-smart-devices-make-an-internet-of-insecure-things

  12. Coron, J., & Goubin, L. (2009). On Boolean and arithmetic masking against differential power analysis. In Cetin Kaya Koc and Paar (pp. 231–237).

    Google Scholar 

  13. Clavier, C., Isorez, Q., & Wurcker, A. (2013), Complete SCARE of AES-like block ciphers by chosen plaintext collision power analysis: In G. Paul & S. Vaudenay (Eds.), INDOCRYPT (Vol. 8250 of Lecture Notes in Computer Science, pp. 116–135). Berlin: Springer.

    Google Scholar 

  14. Byron, A. (2017) Securing the internet of things: Side channel attacks expose sensitive data collected by IoT devices. http://thirdcertainty.com/featured-story/securing-the-internet-of-things-side-channel-attacks-expose-sensitive-data-collected-by-iot-devices/. Accessed January 12, 2017.

  15. Crossman, M. A., & Hong, L. (2015). Study of authentication with IoT testbed. In IEEE International Symposium on Technologies for Homeland Security (HST).

    Google Scholar 

  16. Mangard, S., Oswald, E., & Popp, T. (2007). Power analysis attack—Revealing the secret of smart cards. Heidelberg: Springer.

    MATH  Google Scholar 

  17. Van Eck, W. (1985). Electromagnetic radiation from video display units: An eavesdropping risk. Computers and Security, 4, 269–286.

    Article  Google Scholar 

  18. Richard, J. L., & Morris, L. M. (2005). An introduction to mathematical statistics and its applications (4th ed.). Boston: Prentice Hall.

    Google Scholar 

  19. Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellmann, RSA, DSS and other systems. In CRYPTO’96, LNCS 1109 (pp. 104–113).

    Google Scholar 

  20. Daehyun, S. (2014). Novel application for side-channel analyses of embedded microcontrollers. PhD thesis, Ruhr-Universitat Bochum, Germany.

    Google Scholar 

  21. Quisquater, J. J., & Samyde, D. (2001). Electromagnetic analysis (EMA): Measures and countermeasures for smart cards. E-smart: LNCS 2140 (pp. 200–210).

    Google Scholar 

  22. Agrawal, D., Archambeault, B., Rao, J. R., & Rohatgi, P. (2002). The EM side-channel(s): Attacks and assessment methodologies: In B. S. Kaliski Jr., Ҫ. K. Koҫ, & C. Paar, (Eds.), Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES) (Vol. 2523 of LNCS, pp. 29–45). Berlin: Springer.

    Google Scholar 

  23. Agrawal, D., Archambeault, B., Chari, S., Rao, J. R., & Rohatgi, P. (2003). Advances in side-channel cryptanalysis. RSA Laboratories Cryptobytes, 6(1), 20–32.

    Google Scholar 

  24. Goldack, M. (2008). Side-channel based reverse engineering for microcontrollers. Bochum: Ruhr-University.

    Google Scholar 

  25. Gene, H. G., & Charles, F. L. (1996). Matrix computations (3rd ed.). Baltimore: The Johns Hopkins University Press.

    MATH  Google Scholar 

  26. Aviv, A. J., et.al. (2012). Practicality of accelerometer side channels on smartphones. In Proc. of 28th ACM ACSAC.

    Google Scholar 

  27. Rouf, I., et.al. (2010). Security and privacy vulnerabilities of in-car wireless networks: A tire pressure monitoring system case study. In Proc. of the USENIX Security Symposium (pp. 323–338).

    Google Scholar 

  28. Foo, K. D. (2013). Ghost talk: Mitigating EMI signal injection attacks against analog sensors. In Proceedings of the IEEE Symposium on Security and Privacy.

    Google Scholar 

  29. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., & Sporleder, C. (2010). Acoustic side-channel attacks on printers. In Proceedings of the 19th USENIX Security Symposium. Washington, DC, USA.

    Google Scholar 

  30. Rivest, R. L. (1993). Cryptography and machine learning. Cambridge: Laboratory for Computer Science, Massachusetts Institute of Technology.

    Book  MATH  Google Scholar 

  31. Gabriel, H., et al. (2011). Machine learning in side-channel analysis: A first study. Journal of Cryptographic Engineering, 1(4), 293–302.

    Article  Google Scholar 

  32. Hera, H., Josh, J., & Long, Z. (2012). Side channel cryptanalysis using machine learning using an SVM to recover DES keys from a smart card. Stanford University.

    Google Scholar 

  33. Lerman, L., Bontempi, G., & Markowitch, O. (2011). Side channel attack: An approach based on machine learning. In COSADE, Second International Workshop on Constructive Side-Channel Analysis and Secure Design, 2011.

    Google Scholar 

  34. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  35. Rivest, R. L. (1993). Cryptography and machine learning: Laboratory for computer science. Cambridge: Massachusetts Institute of Technology.

    Book  Google Scholar 

  36. Colin, O., & Zhizhang, D. (2014). Chip whisperer an open-source platform for hardware embedded security research. Halifax: Dalhousie University.

    Google Scholar 

  37. Dough, S. (2002). Triple DES and encrypting PIN pad technology on triton ATMs: Triton systems of Delaware, Inc. ATMdepot.

    Google Scholar 

  38. Marc J (2009) Basics of side-channel analysis: Cryptographic engineering.

    Google Scholar 

  39. Eason, G., Noble, B., & Sneddon, I. N. (1955). On certain integrals of Lipschitz-Hankel type involving products of Bessel functions. Philosophical Transactions of the Royal Society of London, A247, 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  40. Price, W. R. (2004). Roadmap to entrepreneurial success: AMACOM div (p. 42). American Management Assocation. ISBN 978-0-8144-7190-6.

    Google Scholar 

  41. Depas, M., Vermeire, B., Mertens, P. W., Van Meirhaeghe, R. L., & Heyns, M. M. (2012). Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures. Solid-State Electronics, 38, 1465.

    Article  Google Scholar 

  42. Lo, S. H., Buchanan, D. A., Taur, Y., & Wang, W. (2009). Quantum-mechanical modelling of electron tunnelling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Letters, 18, 209.

    Article  Google Scholar 

  43. Wong, Y. J., Saad, I., & Ismail, R. (2006). Characterisation of strained silicon MOSFET using semiconductor TCAD tools. In ICSE2006 Proc, Kuala Lumpur.

    Google Scholar 

  44. Iwai, H., & Ohmi, S. (2002). Silicon integrated circuit technology from past to future. Microelectronics Reliability, 42, 465–491.

    Article  Google Scholar 

  45. Acosta, T., & Sood, S. (2006). Engineering strained silicon-looking back and into the future. IEEE Potentials, 25(4), 31–34.

    Article  Google Scholar 

  46. Zhang, F., Crispi, V. H., & Zhang, P. (2009). Prediction that uniaxial tension along 〈111〉 produces a direct band gap in germanium. Physical Review Letters, 102(15), 156401.

    Article  Google Scholar 

  47. Ngei, L. O. (2010). Design and characterization of biaxial strained silicon N-Mosfet. Master Thesis, Faculty of Electrical Engineering Universiti Teknologi Malaysia.

    Google Scholar 

  48. Djonon Tsague, H., & Twala, B. (2015). First principle leakage current reduction technique for CMOS devices. In IEEE International Conference on Computing, Communication and Security (ICCCS), Mauritius.

    Google Scholar 

  49. Misra, V. (2005), Field effect transistors: The electrical engineering handbook.

    Google Scholar 

  50. Chattererjee, S., Kuo, Y., Lu, J., Tewg, J., & Majhi, P. (2012). Electrical reliability aspects of HfO2 high-K gate dielectric with TaN metal gate electrodes under constant voltage stress. Microelectronics Reliability, 46, 69–76.

    Article  Google Scholar 

  51. Ganymede. (2015). Complementary Metal Oxide Semiconductor (CMOS) (online). Accessed on October 20, 2015.

    Google Scholar 

  52. Shin, Y., Seomun, J., Choi, K. M., & Sakurai, T. (2010). Power gating: Circuits, design methodologies, and best practice for standard-cell VLSI designs. ACM Transactions on Design Automation of Electronic Systems, 15(4), 28:1–28:37.

    Article  Google Scholar 

  53. Greer, J., Korkin, A., & Lebanowsky, J. (2003). Nano and Giga challenges in microelectronics: Molecular and nano electronics: Analysis, design and simulation (1st ed).

    Google Scholar 

  54. Elgomati, H. A., Majlis, B. Y., Ahmad, I., Salahuddin, F., Hamid, F. A., Zaharim, A., et al. (2011). Investigation of the effect for 32 nm PMOS transistor and optimizing using Taguchi method. Asian Journal of Applied Science.

    Google Scholar 

  55. Chen, Y., et al. (2014). Using simulation to characterize high-performance 65 nm node planar. In International Symposium on Nano-Science and Technology, Taiwan.

    Google Scholar 

  56. Wong, H., & Iwai, H. (2013). On the scaling issues and high-k replacement of ultrathin gate dielectric for nanoscale MOS transistor. Microelectronic Engineering, 83(10), 1867–1904.

    Article  Google Scholar 

  57. He, G., & Sun, Z. (2012). High-k dielectrics for CMOS technologies. New York: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hippolyte Djonon Tsague .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tsague, H.D., Twala, B. (2018). Practical Techniques for Securing the Internet of Things (IoT) Against Side Channel Attacks. In: Dey, N., Hassanien, A., Bhatt, C., Ashour, A., Satapathy, S. (eds) Internet of Things and Big Data Analytics Toward Next-Generation Intelligence. Studies in Big Data, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-60435-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60435-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60434-3

  • Online ISBN: 978-3-319-60435-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics