Skip to main content

Abstract

The term spinal cord stimulation (SCS) describes the electrical stimulation of the dorsal column via electrode arrays implanted in the epidural space of a spinal level associated with a painful dermatome. Conventional SCS uses electrical pulses delivered at relatively low frequency (~50 Hz) using array designs that can be customized to patient needs. Electrical current can be adjusted to stimulate and induce paresthesias in large fibers of the dorsal columns, in turn closing the gate to the nociceptive fibers transmitting input to the brain. Recent stimulation paradigms (HF, burst) have shown to be clinically effective without the need for paresthesias, implying that the stimulating electrical field modulates pain signals via alternative mechanisms. SCS is a minimally invasive therapy that has proven to be effective for the treatment of chronic neuropathic pain in which conservative management has failed. Best levels of evidence support SCS efficacy in low back pain indications such as failed back surgery syndrome (FBSS), as well as in complex regional pain syndromes (CRPS). There is also evidence of positive outcomes for treating neuropathies, abdominal/pelvic pain, and ischemic-related pain syndromes. Technological advances in lead design, battery efficiency, and pulse programming, in combination with properly designed randomized clinical trials, will continue to make SCS an effective alternative therapy for chronic painful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Smits H, van Kleef M, Holsheimer J, et al. Experimental spinal cord stimulation and neuropathic pain: mechanism of action, technical aspects, and effectiveness. Pain Pract. 2013;13:154–68.

    Article  PubMed  Google Scholar 

  2. Zhang TC, Janik JJ, Grill WM. Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res. 2014;1569:19–31.

    Article  CAS  PubMed  Google Scholar 

  3. Deer TR, Mekhail N, Provenzano D, et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the neuromodulation appropriateness consensus committee. Neuromodulation. 2014;17:515–50.

    Article  PubMed  Google Scholar 

  4. Boswell MV, Trescot AM, Datta S, et al. Interventional techniques: evidence-based practice guidelines in the management of chronic spinal pain. Pain Physician. 2007;10:7–111.

    PubMed  Google Scholar 

  5. Cameron T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg. 2004;100:254–67.

    PubMed  Google Scholar 

  6. Bullock TD, Hopkins CD, Popper AN, et al. Electroreception. New York: Springer Science+Business Media; 2005.

    Book  Google Scholar 

  7. Gensel L. The medical world of Benjamin Franklin. J Royal Soc Med. 2005;98:534–8.

    Article  Google Scholar 

  8. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.

    Article  CAS  PubMed  Google Scholar 

  9. Shealy CN, Taslitz N, Mortimer JT, et al. Electrical inhibition of pain: experimental evaluation. Anesth Analg. 1967;46:299-305.

    PubMed  Google Scholar 

  10. Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489-491.

    Google Scholar 

  11. Gildenberg PL. History of electrical neuromodulation for chronic pain. Pain Med. 2006;7:S7–S13.

    Article  Google Scholar 

  12. Kumar K, Rizvi S. Historical and present state of neuromodulation in chronic pain. Curr Pain Headache Rep. 2014;18:387.

    Article  PubMed  Google Scholar 

  13. Al-Kaisy A, Van Buyten JP, Smet I, et al. Sustained effectiveness of 10 kHz high-frequency spinal cord stimulation for patients with chronic, low back pain: 24-month results of a prospective multicenter study. Pain Med. 2014;15:347–54.

    Article  PubMed  Google Scholar 

  14. Van Buyten JP, Al-Kaisy A, Smet I, et al. High-frequency spinal cord stimulation for the treatment of chronic back pain patients: results of a prospective multicenter European clinical study. Neuromodulation. 2013;16:59–65.

    Article  PubMed  Google Scholar 

  15. Kapural L, Cong Y, Doust MW, et al. Comparison or 10-kHz high-frequency and traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: 24-month results from a multicenter, randomized, controlled pivotal trial. Neurosurgery 2016; 79:667–677.

    Google Scholar 

  16. De Ridder D, Vanneste S, Plazier M, et al. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 2010;66:986–90.

    Article  PubMed  Google Scholar 

  17. Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. Pain. 2011;152:2204–5.

    Article  PubMed  Google Scholar 

  18. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73:638–52.

    Article  Google Scholar 

  19. Wu G, Ringkamp M, Murinson BB, et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci. 2002;22:7746–53.

    CAS  PubMed  Google Scholar 

  20. Janssen SP, Truin M, Van Kleef M, et al. Differential GABAergic disinhibition during the development of painful peripheral neuropathy. Neuroscience. 2011;184:183–94.

    Article  CAS  PubMed  Google Scholar 

  21. Scholz J, Broom DC, Youn DH, et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci. 2005;25:7317–23.

    Article  CAS  PubMed  Google Scholar 

  22. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–21.

    Article  CAS  PubMed  Google Scholar 

  23. Ben Achour S, Pascual O. Glia: the many ways to modulate synaptic plasticity. Neurochem Int. 2010;57:440–5.

    Article  CAS  PubMed  Google Scholar 

  24. Bagger JP, Jensen BS, Johannsen G. Long-term outcome of spinal cord electrical stimulation in patients with refractory chest pain. Clin Cardiol. 1998;21:286–8.

    Article  CAS  PubMed  Google Scholar 

  25. DeJongste MJ. Efficacy, safety and mechanisms of spinal cord stimulation used as an additional therapy for patients suffering from chronic refractory angina pectoris. Neuromodulation. 1999;2:188–92.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor RS, Van Buyten JP, Buchser E. Spinal cord stimulation for complex regional pain syndrome: a systematic review of the clinical and cost-effectiveness literature and assessment of prognostic factors. Eur J Pain. 2006;10:91–101.

    Article  PubMed  Google Scholar 

  27. Kumar K, Hunter G, Demeria D. Spinal cord stimulation in treatment of chronic benign pain: challenges in treatment planning and present status, a 22-year experience. Neurosurgery. 2006;58:481–96.

    Article  PubMed  Google Scholar 

  28. Kemler MA, De Vet HC, Barendse GA, et al. The effect of spinal cord stimulation in patients with chronic reflex sympathetic dystrophy: two years’ follow-up of the randomized controlled trial. Ann Neurol. 2004;55:13–8.

    Article  PubMed  Google Scholar 

  29. Kemler MA, de Vet HC, Barendse GA, et al. Spinal cord stimulation for chronic reflex sympathetic dystrophy--five-year follow-up. N Engl J Med. 2006;354:2394–6.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor RS, Desai MJ, Rigoard P, et al. Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: a systematic review and meta-regression analysis. Pain Pract. 2014;14:489–505.

    Article  PubMed  Google Scholar 

  31. Grider JS, Manchikanti L, Carayannopoulos A., et al. Effectiveness of Spinal Cord Stimulation in Chronic Spinal Pain: A Systematic Review Pain Physician 2016; 19;E33–E54.

    Google Scholar 

  32. Turner JA, Loeser JD, Deyo RA, et al. Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. Pain. 2004;108:137–47.

    Article  PubMed  Google Scholar 

  33. Bala MM, Riemsma RP, Nixon J, et al. Systematic review of the (cost-)effectiveness of spinal cord stimulation for people with failed back surgery syndrome. Clin J Pain. 2008;24:741–56.

    Article  PubMed  Google Scholar 

  34. Dworkin RH, O'Connor AB, Kent J, et al. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013;154:2249–61.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Manchikanti L, Abdi S, Atluri S, et al. An update of comprehensive evidence-based guidelines for interventional techniques in chronic spinal pain. Part II: guidance and recommendations. Pain Physician. 2013;16:S49–283.

    PubMed  Google Scholar 

  36. Kumar K, Taylor RS, Jacques L, et al. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery. 2008;63:762–70.

    Article  PubMed  Google Scholar 

  37. North RB, Kidd DH, Farrokhi F, et al. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery. 2005;56:98–107.

    Article  PubMed  Google Scholar 

  38. North R, Shipley J, Prager J, et al. Practice parameters for the use of spinal cord stimulation in the treatment of chronic neuropathic pain. Pain Med. 2007;8:S200–75.

    Article  PubMed  Google Scholar 

  39. Simpson EL, Duenas A, Holmes MW, et al. Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. Health Technol Assess. 2009;13:1–154.

    Google Scholar 

  40. Kumar K, Rizvi S. Cost-effectiveness of spinal cord stimulation therapy in management of chronic pain. Pain Med. 2013;14:1631–49.

    Article  PubMed  Google Scholar 

  41. Kemler MA, de Vet HC, Barendse GA, et al. Effect of spinal cord stimulation for chronic complex regional pain syndrome type I: five-year final follow-up of patients in a randomized controlled trial. J Neurosurg. 2008;108:292–8.

    Article  PubMed  Google Scholar 

  42. Moriyama K, Murakawa K, Uno T, et al. A prospective, open-label, multicenter study to assess the efficacy of spinal cord stimulation and identify patients who would benefit. Neuromodulation. 2012;15:7–11.

    Article  PubMed  Google Scholar 

  43. Pluijms WA, Slangen R, Joosten EA, et al. Electrical spinal cord stimulation in painful diabetic polyneuropathy, a systematic review on treatment efficacy and safety. Eur J Pain. 2011;15:783–8.

    Article  PubMed  Google Scholar 

  44. Tesfaye S, Watt J, Benbow SJ, et al. Electrical spinal-cord stimulation for painful diabetic peripheral neuropathy. Lancet. 1996;348:1698–701.

    Article  CAS  PubMed  Google Scholar 

  45. Daousi C, Benbow SJ, MacFarlane IA. Electrical spinal cord stimulation in the long-term treatment of chronic painful diabetic neuropathy. Diabet Med. 2005;22:393–8.

    Article  CAS  PubMed  Google Scholar 

  46. de Vos CC, Rajan V, Steenbergen W, et al. Effect and safety of spinal cord stimulation for treatment of chronic pain caused by diabetic neuropathy. J Diabetes Complicat. 2009;23:40–5.

    Article  PubMed  Google Scholar 

  47. Kumar K, Toth C, Nath RK. Spinal cord stimulation for chronic pain in peripheral neuropathy. Surg Neurol. 1996;46:363–9.

    Article  CAS  PubMed  Google Scholar 

  48. Tiede JM, Ghazi SM, Lamer TJ, et al. The use of spinal cord stimulation in refractory abdominal visceral pain: case reports and literature review. Pain Pract. 2006;6:197–202.

    Article  PubMed  Google Scholar 

  49. Khan YN, Raza SS, Khan EA. Application of spinal cord stimulation for the treatment of abdominal visceral pain syndromes: case reports. Neuromodulation. 2005;8:14–27.

    Article  PubMed  Google Scholar 

  50. Kapural L, Narouze SN, Janicki TI, et al. Spinal cord stimulation is an effective treatment for the chronic intractable visceral pelvic pain. Pain Med. 2006;7:440–3.

    Article  PubMed  Google Scholar 

  51. Kapural L, Nagem H, Tlucek H, et al. Spinal cord stimulation for chronic visceral abdominal pain. Pain Med. 2010;11:347–55.

    Article  PubMed  Google Scholar 

  52. Ubbink DT, Vermeulen H, Spincemaille GH, et al. Systematic review and meta-analysis of controlled trials assessing spinal cord stimulation for inoperable critical leg ischaemia. Br J Surg. 2004;91:948–55.

    Article  CAS  PubMed  Google Scholar 

  53. Ubbink DT, Vermeulen H. Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia. Cochrane Database Syst Rev. 2013;2:CD004001.

    Google Scholar 

  54. Amann W, Berg P, Gersbach P, et al. Spinal cord stimulation in the treatment of non-reconstructable stable critical leg ischaemia: results of the European Peripheral Vascular Disease Outcome Study (SCS-EPOS). Eur J Vasc Endovasc Surg. 2003;26:280–6.

    Article  CAS  PubMed  Google Scholar 

  55. Linderoth B, Foreman RD, Meyerson BA. Mechanisms of action of spinal cord stimulation. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery: McGraw Hill; 2009. p. 2331–48.

    Google Scholar 

  56. Calvo M, Bennett DL. The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol. 2012;234:271–82.

    Article  CAS  PubMed  Google Scholar 

  57. Linderoth B, Foreman RD. Mechanisms of spinal cord stimulation in painful syndromes: role of animal models. Pain Med. 2006;7:S14–26.

    Article  Google Scholar 

  58. Song Z, Viisanen H, Meyerson BA, et al. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation. 2014;17:226–34.

    Article  PubMed  Google Scholar 

  59. Shechter R, Yang F, Xu Q, et al. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain. Anesthesiology. 2013;119:422–32.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kleinman W. Spinal, epidural, and caudal blocks. In: Morgan GE, Mikhail MS, Murray M, editors. Clinical anesthesiology. 3rd ed. New York: Lange Medical Books/McGraw Hill; 2002. p. 253–82.

    Google Scholar 

  61. Raj P, Lou L, Erdine S, et al. Cervical epidural nerve block. In: Radiographic imaging for regional anesthesia and pain management. New York: Churchill Livingstone; 2002. p. 99–105.

    Google Scholar 

  62. Alo KM, Holsheimer J. New trends in neuromodulation for the management of neuropathic pain. Neurosurgery. 2002;50:690–703.

    Article  PubMed  Google Scholar 

  63. Holsheimer J, Barolat G. Spinal geometry and paresthesia coverage in spinal cord stimulation. Neuromodulation. 1998;1:129–36.

    Article  Google Scholar 

  64. North RB, Kidd DH, Olin J, et al. Spinal cord stimulation for axial low back pain: a prospective, controlled trial comparing dual with single percutaneous electrodes. Spine (Phila Pa 1976). 2005;30:1412–8.

    Article  Google Scholar 

  65. Oakley J, Espinosa F, Bothe H, et al. Transverse tripolar spinal cord stimulation: results of an international multicenter study. Neuromodulation. 2006;9:192–203.

    Article  PubMed  Google Scholar 

  66. North RB, Kidd DH, Petrucci L, et al. Spinal cord stimulation electrode design: a prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes: part II-clinical outcomes. Neurosurgery. 2005;57:990–6.

    Article  PubMed  Google Scholar 

  67. Waldman S. Interventional pain management. 2nd ed. Philadelphia: Saunders; 2001.

    Google Scholar 

  68. Kumar K, Taylor RS, Jacques L, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132:179–88.

    Article  PubMed  Google Scholar 

  69. Farrar JT, Portenoy RK, Berlin JA, et al. Defining the clinically important difference in pain outcome measures. Pain. 2000;88:287–94.

    Article  CAS  PubMed  Google Scholar 

  70. Farrar JT, Young JP Jr, LaMoreaux L, et al. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149–58.

    Article  CAS  PubMed  Google Scholar 

  71. Renard VM, North RB. Prevention of percutaneous electrode migration in spinal cord stimulation by a modification of the standard implantation technique. J Neurosurg Spine. 2006;4:300–3.

    Article  PubMed  Google Scholar 

  72. Quigley DG, Arnold J, Eldridge PR, et al. Long-term outcome of spinal cord stimulation and hardware complications. Stereotact Funct Neurosurg. 2003;81:50–6.

    Article  PubMed  Google Scholar 

  73. Deer TR, Mekhail N, Provenzano D, et al. The appropriate use of neurostimulation: avoidance and treatment of complications of neurostimulation therapies for the treatment of chronic pain. Neuromodulation. 2014;17:571–98.

    Article  PubMed  Google Scholar 

  74. Horlocker TT, Wedel DJ, Rowlingson JC, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (third edition). Reg Anesth Pain Med. 2010;35:64–101.

    Article  CAS  PubMed  Google Scholar 

  75. International Spine Intervention Society. Anticoagulants. In: Bogduk N, editor. Practice guidelines for spinal diagnostic and treatment procedures. 2nd ed. San Francisco: International Spine Intervention Society; 2013. p. 9–17.

    Google Scholar 

  76. Gogarten W, Vandermeulen E, Van Aken H, et al. European Society of Anaesthesiology. Regional anaesthesia and antithrombotic agents: recommendations of the European Society of Anaesthesiology. Eur J Anaesthesiol. 2010;27:999–1015.

    Article  CAS  PubMed  Google Scholar 

  77. Manchikanti L, Malla Y, Wargo BW, et al. A prospective evaluation of bleeding risk of interventional techniques in chronic pain. Pain Physician. 2011;14:317–29.

    PubMed  Google Scholar 

Download references

Acknowledgments

This book chapter is modified and updated from a previous book chapter, “Spinal Cord Stimulation” by Ricardo Vallejo, MD, PhD; Ramsin M. Benyamin, MD; Jeffery Kramer, PhD; and Donny Bounds, MSN, in Interventional Techniques in Chronic Spinal Pain published by ASIPP Publishing. Permission has been obtained from ASIPP Publishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsin Benyamin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benyamin, R., Vallejo, R., Cedeño, D.L. (2018). Spinal Cord Stimulation. In: Manchikanti, L., Kaye, A., Falco, F., Hirsch, J. (eds) Essentials of Interventional Techniques in Managing Chronic Pain. Springer, Cham. https://doi.org/10.1007/978-3-319-60361-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60361-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60359-9

  • Online ISBN: 978-3-319-60361-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics