Skip to main content

New Technology and Techniques in Breast Reconstruction

  • Chapter
  • First Online:
Changing Paradigms in the Management of Breast Cancer

Abstract

Breast reconstruction demand was born from the introduction of the mastectomy into the management of breast disease. Since that time, several critical factors have contributed to its continued growth. These factors include not only the increasing occurrence of benign and malignant breast disease but also improved breast diagnostic capabilities and heightened social awareness of the clinical problem.

The most important social event in the history of breast reconstruction was the passage of the Women’s Health and Cancer Rights Act of 1998. This legislation mandates that group health plans offering mastectomy coverage also cover reconstruction of the operated breast and surgery of the contralateral breast to produce a symmetrical appearance. Due to the above factors, the number of breast reconstruction procedures performed annually is on the rise. The mindset associated with these procedures has evolved to include elevated standards for aesthetic outcomes and patient safety, resulting in breast reconstruction technical innovations, new technology utilized in reconstruction, improved patient satisfaction, and clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vandeweyer E, Deraemaecker R. Radiation therapy after immediate breast reconstruction with implants. Plast Reconstr Surg. 2000;106(1):56–8. discussion 9–60

    Article  CAS  PubMed  Google Scholar 

  2. Spear SL, Onyewu C. Staged breast reconstruction with saline-filled implants in the irradiated breast: recent trends and therapeutic implications. Plast Reconstr Surg. 2000;105(3):930–42.

    Article  CAS  PubMed  Google Scholar 

  3. Tran NV, Chang DW, Gupta A, Kroll SS, Robb GL. Comparison of immediate and delayed free TRAM flap breast reconstruction in patients receiving postmastectomy radiation therapy. Plast Reconstr Surg. 2001;108(1):78–82.

    Article  CAS  PubMed  Google Scholar 

  4. Shaikh-Naidu N, Preminger BA, Rogers K, Messina P, Gayle LB. Determinants of aesthetic satisfaction following TRAM and implant breast reconstruction. Ann Plast Surg. 2004;52(5):465–70. discussion 70

    Article  PubMed  Google Scholar 

  5. Ho AL, Klassen AF, Cano S, Scott AM, Pusic AL. Optimizing patient-centered care in breast reconstruction: the importance of preoperative information and patient-physician communication. Plast Reconstr Surg. 2013;132(2):212e–20e.

    Article  CAS  PubMed  Google Scholar 

  6. Zhong T, Hu J, Bagher S, O’Neill AC, Beber B, Hofer SO, et al. Decision regret following breast reconstruction: the role of self-efficacy and satisfaction with information in the preoperative period. Plast Reconstr Surg. 2013;132(5):724e–34e.

    Article  CAS  PubMed  Google Scholar 

  7. Morrow M, Mujahid M, Lantz PM, Janz NK, Fagerlin A, Schwartz K, et al. Correlates of breast reconstruction: results from a population-based study. Cancer. 2005;104(11):2340–6.

    Article  PubMed  Google Scholar 

  8. Alderman AK, Hawley ST, Janz NK, Mujahid MS, Morrow M, Hamilton AS, et al. Racial and ethnic disparities in the use of postmastectomy breast reconstruction: results from a population- based study. J Clin Oncol. 2009;27(32):5325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vargas CR, Kantak NA, Chuang DJ, Koolen PG, Lee BT. Assessment of online patient materials for breast reconstruction. J Surg Res. 2015;199(1):280–6.

    Article  PubMed  Google Scholar 

  10. Choban PS, Flancbaum L. The impact of obesity on surgical outcomes: a review. J Am Coll Surg. 1997;185(6):593–603.

    Article  CAS  PubMed  Google Scholar 

  11. Woerdeman LA, Hage JJ, Hofland MM, Rutgers EJ. A prospective assessment of surgical risk factors in 400 cases of skin-sparing mastectomy and immediate breast reconstruction with implants to establish selection criteria. Plast Reconstr Surg. 2007;119(2):455–63.

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy CM, Mehrara BJ, Riedel E, Davidge K, Hinson A, Disa JJ, et al. Predicting complications following expander/implant breast reconstruction: an outcomes analysis based on preoperative clinical risk. Plast Reconstr Surg. 2008;121(6):1886–92.

    Article  CAS  PubMed  Google Scholar 

  13. Vyas RM, Dickinson BP, Fastekjian JH, Watson JP, Dalio AL, Crisera CA. Risk factors for abdominal donor-site morbidity in free flap breast reconstruction. Plast Reconstr Surg. 2008;121(5):1519–26.

    Article  CAS  PubMed  Google Scholar 

  14. Hanwright PJ, Davila AA, Hirsch EM, Khan SA, Fine NA, Bilimoria KY, et al. The differential effect of BMI on prosthetic versus autogenous breast reconstruction: a multivariate analysis of 12,986 patients. Breast. 2013;22(5):938–45.

    Article  PubMed  Google Scholar 

  15. Wolf AM, Kuhlmann HW. Reconstructive procedures after massive weight loss. Obes Surg. 2007;17(3):355–60.

    Article  PubMed  Google Scholar 

  16. Ozturk CN, Kundu N, Bernard S, Cooper K, Ozturk C, Djohan R. Breast reconstruction with abdominal-based free flaps in high body mass index population: postoperative complications and impact of weight loss. Ann Plast Surg. 2014;72(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  17. Larson KE, Ozturk CN, Kundu N, Cooper KR, Bernard S, Djohan R. Achieving patient satisfaction in abdominally based free flap breast reconstruction: correlation with body mass index subgroups and weight loss. Plast Reconstr Surg. 2014;133(4):763–73.

    Article  CAS  PubMed  Google Scholar 

  18. Kearon C. Natural history of venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I22–30.

    PubMed  Google Scholar 

  19. Pannucci CJ, Chang EY, Wilkins EG. Venous thromboembolic disease in autogenous breast reconstruction. Ann Plast Surg. 2009;63(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  20. Pannucci CJ, Bailey SH, Dreszer G, Fisher Wachtman C, Zumsteg JW, Jaber RM, et al. Validation of the Caprini risk assessment model in plastic and reconstructive surgery patients. J Am Coll Surg. 2011;212(1):105–12.

    Article  PubMed  Google Scholar 

  21. Chae MP, Hunter-Smith DJ, Rozen WM. Comparative analysis of fluorescent angiography, computed tomographic angiography and magnetic resonance angiography for planning autologous breast reconstruction. Gland Surg. 2015;4(2):164–78.

    PubMed  PubMed Central  Google Scholar 

  22. Pestana IA, Zenn MR. Correlation between abdominal perforator vessels identified with preoperative CT angiography and intraoperative fluorescent angiography in the microsurgical breast reconstruction patient. Ann Plast Surg. 2014;72(6):S144–9.

    Article  CAS  PubMed  Google Scholar 

  23. Giunta RE, Geisweid A, Feller AM. The value of preoperative Doppler sonography for planning free perforator flaps. Plast Reconstr Surg. 2000;105(7):2381–6.

    Article  CAS  PubMed  Google Scholar 

  24. Scott JR, Liu D, Said H, Neligan PC, Mathes DW. Computed tomographic angiography in planning abdomen-based microsurgical breast reconstruction: a comparison with color duplex ultrasound. Plast Reconstr Surg. 2010;125(2):446–53.

    Article  CAS  PubMed  Google Scholar 

  25. Masia J, Kosutic D, Cervelli D, Clavero JA, Monill JM, Pons G. In search of the ideal method in perforator mapping: noncontrast magnetic resonance imaging. J Reconstr Microsurg. 2010;26(1):29–35.

    Article  PubMed  Google Scholar 

  26. Rozen WM, Stella DL, Bowden J, Taylor GI, Ashton MW. Advances in the pre-operative planning of deep inferior epigastric artery perforator flaps: magnetic resonance angiography. Microsurgery. 2009;29(2):119–23.

    Article  PubMed  Google Scholar 

  27. Newman MI, Samson MC. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J Reconstr Microsurg. 2009;25(1):21–6.

    Article  PubMed  Google Scholar 

  28. Pestana IA, Coan B, Erdmann D, Marcus J, Levin LS, Zenn MR. Early experience with fluorescent angiography in free-tissue transfer reconstruction. Plast Reconstr Surg. 2009;123(4):1239–44.

    Article  CAS  PubMed  Google Scholar 

  29. Newman MI, Samson MC, Tamburrino JF, Swartz KA. Intraoperative laser-assisted indocyanine green angiography for the evaluation of mastectomy flaps in immediate breast reconstruction. J Reconstr Microsurg. 2010;26(7):487–92.

    Article  PubMed  Google Scholar 

  30. Duggal CS, Madni T, Losken A. An outcome analysis of intraoperative angiography for postmastectomy breast reconstruction. Aesthet Surg J. 2014;34(1):61–5.

    Article  PubMed  Google Scholar 

  31. Chang EI, Chang EI, Soto-Miranda MA, Zhang H, Nosrati N, Crosby MA, et al. Comprehensive evaluation of risk factors and management of impending flap loss in 2138 breast free flaps. Ann Plast Surg. 2016;77(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  32. Swartz WM, Jones NF, Cherup L, Klein A. Direct monitoring of microvascular anastomoses with the 20-MHz ultrasonic Doppler probe: an experimental and clinical study. Plast Reconstr Surg. 1988;81(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  33. Rozen WM, Chubb D, Whitaker IS, Acosta R. The efficacy of postoperative monitoring: a single surgeon comparison of clinical monitoring and the implantable Doppler probe in 547 consecutive free flaps. Microsurgery. 2010;30(2):105–10.

    Article  PubMed  Google Scholar 

  34. Kind GM, Buntic RF, Buncke GM, Cooper TM, Siko PP, Buncke HJ Jr. The effect of an implantable Doppler probe on the salvage of microvascular tissue transplants. Plast Reconstr Surg. 1998;101(5):1268–73. discussion 74–5

    Article  CAS  PubMed  Google Scholar 

  35. Um GT, Chang J, Louie O, Colohan SM, Said HK, Neligan PC, et al. Implantable Cook-Swartz Doppler probe versus Synovis Flow Coupler for the post-operative monitoring of free flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2014;67(7):960–6.

    Article  PubMed  Google Scholar 

  36. Kempton SJ, Poore SO, Chen JT, Afifi AM. Free flap monitoring using an implantable anastomotic venous flow coupler: analysis of 119 consecutive abdominal-based free flaps for breast reconstruction. Microsurgery. 2015;35(5):337–44.

    Article  PubMed  Google Scholar 

  37. Hirigoyen MB, Blackwell KE, Zhang WX, Silver L, Weinberg H, Urken ML. Continuous tissue oxygen tension measurement as a monitor of free-flap viability. Plast Reconstr Surg. 1997;99(3):763–73.

    Article  CAS  PubMed  Google Scholar 

  38. Keller A. Noninvasive tissue oximetry for flap monitoring: an initial study. J Reconstr Microsurg. 2007;23(4):189–97.

    Article  PubMed  Google Scholar 

  39. Lin SJ, Nguyen MD, Chen C, Colakoglu S, Curtis MS, Tobias AM, et al. Tissue oximetry monitoring in microsurgical breast reconstruction decreases flap loss and improves rate of flap salvage. Plast Reconstr Surg. 2011;127(3):1080–5.

    Article  CAS  PubMed  Google Scholar 

  40. Halsted WS. I. The results of operations for the cure of cancer of the breast performed at the Johns Hopkins Hospital from June, 1889, to January, 1894. Ann Surg. 1894;20(5):497–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fisher B, Redmond C, Fisher ER, Bauer M, Wolmark N, Wickerham DL, et al. Ten-year results of a randomized clinical trial comparing radical mastectomy and total mastectomy with or without radiation. N Engl J Med. 1985;312(11):674–81.

    Article  CAS  PubMed  Google Scholar 

  42. Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med. 2002;347(16):1227–32.

    Article  PubMed  Google Scholar 

  43. Fisher B, Anderson S, Bryan J. Twenty year follow up of a randomized trial comparing total mastectomy, lumpectomy and lumpectomy plus radiation for treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–47.

    Article  PubMed  Google Scholar 

  44. Steiner CA, Weiss AJ, Barrett ML, Fingar KR, Davis PH. Trends in bilateral and unilateral mastectomies in hospital inpatient and ambulatory settings, 2005–2013: statistical brief #201. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville; 2006.

    Google Scholar 

  45. Toth BA, Lappert P. Modified skin incisions for mastectomy: the need for plastic surgical input in preoperative planning. Plast Reconstr Surg. 1991;87(6):1048–53.

    Article  CAS  PubMed  Google Scholar 

  46. Carlson GW, Bostwick J 3rd, Styblo TM, Moore B, Bried JT, Murray DR, et al. Skin-sparing mastectomy. Oncologic and reconstructive considerations. Ann Surg. 1997;225(5):570–5. discussion 5–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carlson GW. Technical advances in skin sparing mastectomy. Int J Surg Oncol. 2011;2011:7.

    Google Scholar 

  48. Agha RA, Wellstead G, Sagoo H, Al Omran Y, Barai I, Rajmohan S, et al. Nipple sparing versus skin sparing mastectomy: a systematic review protocol. BMJ Open. 2016;6(5):e010151.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang H, Li Y, Moran MS, Haffty BG, Yang Q. Predictive factors of nipple involvement in breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2015;151(2):239–49.

    Article  CAS  PubMed  Google Scholar 

  50. Donovan CA, Harit AP, Chung A, Bao J, Giuliano AE, Amersi F. Oncological and surgical outcomes after nipple-sparing mastectomy: do incisions matter? Ann Surg Oncol. 2016;23(10):3226–31.

    Article  PubMed  Google Scholar 

  51. Stolier AJ, Levine EA. Reducing the risk of nipple necrosis: technical observations in 340 nipple-sparing mastectomies. Breast J. 2013;19(2):173–9.

    Article  PubMed  Google Scholar 

  52. Radovan C. Breast reconstruction after mastectomy using the temporary expander. Plast Reconstr Surg. 1982;69(2):195–208.

    Article  CAS  PubMed  Google Scholar 

  53. Spear SL, Majidian A. Immediate breast reconstruction in two stages using textured, integrated-valve tissue expanders and breast implants: a retrospective review of 171 consecutive breast reconstructions from 1989 to 1996. Plast Reconstr Surg. 1998;101(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  54. Austad ED, Rose GL. A self-inflating tissue expander. Plast Reconstr Surg. 1982;70(5):588–94.

    Article  CAS  PubMed  Google Scholar 

  55. Connell AF. Patient-activated controlled expansion for breast reconstruction with controlled carbon dioxide inflation: a feasibility study. Plast Reconstr Surg. 2011;128(4):848–52.

    Article  CAS  PubMed  Google Scholar 

  56. Connell TF. Patient-activated controlled expansion for breast reconstruction using controlled carbon dioxide inflation: confirmation of a feasibility study. Plast Reconstr Surg. 2014;134(4):503e–11e.

    Article  CAS  PubMed  Google Scholar 

  57. Maxwell GP, Gabriel A. The evolution of breast implants. Plast Reconstr Surg. 2014;134(1 Suppl):12S–7S.

    Article  PubMed  Google Scholar 

  58. Heden P, Jernbeck J, Hober M. Breast augmentation with anatomical cohesive gel implants: the world’s largest current experience. Clin Plast Surg. 2001;28(3):531–52.

    Article  CAS  PubMed  Google Scholar 

  59. Adams WP Jr, Potter J, Spear SL. Breast implants: materials and manufacturing past, present and future. In: Kluwer W, editor. Surger of the breast: principles and art. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 344–56.

    Google Scholar 

  60. Brown MH, Shenker R, Silver SA. Cohesive silicone gel breast implants in aesthetic and reconstructive breast surgery. Plast Reconstr Surg. 2005;116(3):768–79. discussion 80–1

    Article  CAS  PubMed  Google Scholar 

  61. Barnsley GP, Sigurdson LJ, Barnsley SE. Textured surface breast implants in the prevention of capsular contracture among breast augmentation patients: a meta-analysis of randomized controlled trials. Plast Reconstr Surg. 2006;117(7):2182–90.

    Article  CAS  PubMed  Google Scholar 

  62. Ersek RA, Salisbury AV. Textured surface, nonsilicone gel breast implants: four years’ clinical outcome. Plast Reconstr Surg. 1997;100(7):1729–39.

    Article  CAS  PubMed  Google Scholar 

  63. Choi M, Frey JD, Alperovich M, Levine JP, Karp NS. “Breast in a Day”: examining single-stage immediate, permanent implant reconstruction in nipple-sparing mastectomy. Plast Reconstr Surg. 2016;138(2):184e–91e.

    Article  CAS  PubMed  Google Scholar 

  64. Krishnan NM, Fischer JP, Basta MN, Nahabedian MY. Is single-stage prosthetic reconstruction cost effective? A cost-utility analysis for the use of direct-to-implant breast reconstruction relative to expander-implant reconstruction in postmastectomy patients. Plast Reconstr Surg. 2016;138(3):537–47.

    Article  CAS  PubMed  Google Scholar 

  65. Bindingnavele V, Gaon M, Ota KS, Kulber DA, Lee DJ. Use of acellular cadaveric dermis and tissue expansion in postmastectomy breast reconstruction. J Plast Reconstr Aesthet Surg. 2007;60(11):1214–8.

    Article  PubMed  Google Scholar 

  66. Leong M, Basu CB, Hicks MJ. Further evidence that human acellular dermal matrix decreases inflammatory markers of capsule formation in implant-based breast reconstruction. Aesthet Surg J. 2015;35(1):40–7.

    Article  PubMed  Google Scholar 

  67. Yu D, Hanna KR, LeGallo RD, Drake DB. Comparison of histological characteristics of acellular dermal matrix capsules to surrounding breast capsules in acellular dermal matrix-assisted breast reconstruction. Ann Plast Surg. 2016;76(5):485–8.

    Article  CAS  PubMed  Google Scholar 

  68. Hartrampf CR, Scheflan M, Black PW. Breast reconstruction with a transverse abdominal island flap. Plast Reconstr Surg. 1982;69(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  69. Serletti JM. Breast reconstruction with the TRAM flap: pedicled and free. J Surg Oncol. 2006;94(6):532–7.

    Article  PubMed  Google Scholar 

  70. Nahabedian MY, Tsangaris T, Momen B. Breast reconstruction with the DIEP flap or the muscle-sparing (MS-2) free TRAM flap: is there a difference? Plast Reconstr Surg. 2005;115(2):436–44. discussion 45–6

    Article  PubMed  Google Scholar 

  71. Ulatowski L, Kaniewska A. The use of the diep flap in the modern reconstructive surgery. Pol Przegl Chir. 2015;87(9):472–81.

    Article  PubMed  Google Scholar 

  72. Blondeel PN. One hundred free DIEP flap breast reconstructions: a personal experience. Br J Plast Surg. 1999;52(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  73. Wu LC, Bajaj A, Chang DW, Chevray PM. Comparison of donor-site morbidity of SIEA, DIEP, and muscle-sparing TRAM flaps for breast reconstruction. Plast Reconstr Surg. 2008;122(3):702–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ahmadzadeh R, Bergeron L, Tang M, Morris SF. The superior and inferior gluteal artery perforator flaps. Plast Reconstr Surg. 2007;120(6):1551–6.

    Article  CAS  PubMed  Google Scholar 

  75. Schoeller T, Wechselberger G. Breast reconstruction by the free transverse gracilis (TUG) flap. Br J Plast Surg. 2004;57(5):481–2.

    Article  PubMed  Google Scholar 

  76. Allen RJ Jr, Lee ZH, Mayo JL, Levine J, Ahn C, Allen RJ Sr. The Profunda Artery Perforator (PAP) flap experience for breast reconstruction. Plast Reconstr Surg. 2016;138:968–75.

    Article  CAS  PubMed  Google Scholar 

  77. Magarakis M, Venkat R, Dellon AL, Shridharani SM, Bellamy J, Vaca EE, et al. Pilot study of breast sensation after breast reconstruction: evaluating the effects of radiation therapy and perforator flap neurotization on sensory recovery. Microsurgery. 2013;33(6):421–31.

    Article  PubMed  Google Scholar 

  78. Spiegel AJ, Menn ZK, Eldor L, Kaufman Y, Dellon AL. Breast reinnervation: DIEP neurotization using the third anterior intercostal nerve. Plast Reconstr Surg Glob Open. 2013;1(8):e72.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hamdi M, Khuthaila DK, Van Landuyt K, Roche N, Monstrey S. Double-pedicle abdominal perforator free flaps for unilateral breast reconstruction: new horizons in microsurgical tissue transfer to the breast. J Plast Reconstr Aesthet Surg. 2007;60(8):904–12. discussion 13–4

    Article  PubMed  Google Scholar 

  80. Rozen WM, Patel NG, Ramakrishnan VV. Increasing options in autologous microsurgical breast reconstruction: four free flaps for ‘stacked’ bilateral breast reconstruction. Gland Surg. 2016;5(2):255–60.

    PubMed  PubMed Central  Google Scholar 

  81. Murray A, Wasiak J, Rozen WM, Ferris S, Grinsell D. Stacked abdominal flap for unilateral breast reconstruction. J Reconstr Microsurg. 2015;31(3):179–86.

    PubMed  Google Scholar 

  82. Delay E, Garson S, Tousson G, Sinna R. Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J. 2009;29(5):360–76.

    Article  PubMed  Google Scholar 

  83. Gosset J, Guerin N, Toussoun G, Delaporte T, Delay E. Radiological evaluation after lipomodelling for correction of breast conservative treatment sequelae. Ann Chir Plast Esthet. 2008;53(2):178–89.

    Article  CAS  PubMed  Google Scholar 

  84. Kaoutzanis C, Xin M, Ballard TN, Welch KB, Momoh AO, Kozlow JH, et al. Autologous fat grafting after breast reconstruction in postmastectomy patients: complications, biopsy rates, and locoregional cancer recurrence rates. Ann Plast Surg. 2016;76(3):270–5.

    Article  CAS  PubMed  Google Scholar 

  85. Coleman SR, Saboeiro AP. Fat grafting to the breast revisited: safety and efficacy. Plast Reconstr Surg. 2007;119(3):775–85. discussion 86–7

    Article  CAS  PubMed  Google Scholar 

  86. Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li M, et al. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis. 2016;7(9):e2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, et al. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22. discussion 23–4

    Article  CAS  PubMed  Google Scholar 

  88. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 2015;136(4):897–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kanchwala SK, Glatt BS, Conant EF, Bucky LP. Autologous fat grafting to the reconstructed breast: the management of acquired contour deformities. Plast Reconstr Surg. 2009;124(2):409–18.

    Article  CAS  PubMed  Google Scholar 

  90. Smith CJ, Khouri RK, Baker TJ. Initial experience with the Brava nonsurgical system of breast enhancement. Plast Reconstr Surg. 2002;110(6):1593–5. author reply 5–8

    Article  PubMed  Google Scholar 

  91. Saxena V, Hwang CW, Huang S, Eichbaum Q, Ingber D, Orgill DP. Vacuum-assisted closure: microdeformations of wounds and cell proliferation. Plast Reconstr Surg. 2004;114(5):1086–96. discussion 97–8

    Article  PubMed  Google Scholar 

  92. Didier F, Arnaboldi P, Gandini S, Maldifassi A, Goldhirsch A, Radice D, et al. Why do women accept to undergo a nipple sparing mastectomy or to reconstruct the nipple areola complex when nipple sparing mastectomy is not possible? Breast Cancer Res Treat. 2012;132(3):1177–84.

    Article  CAS  PubMed  Google Scholar 

  93. Satteson ES, Reynolds MF, Bond AM, Pestana IA. An analysis of complication risk factors in 641 nipple reconstructions. Breast J. 2016;22(4):379–83.

    Article  PubMed  Google Scholar 

  94. Zenn MR, Garofalo JA. Unilateral nipple reconstruction with nipple sharing: time for a second look. Plast Reconstr Surg. 2009;123(6):1648–53.

    Article  CAS  PubMed  Google Scholar 

  95. Halvorson EG, Cormican M, West ME, Myers V. Three-dimensional nipple-areola tattooing: a new technique with superior results. Plast Reconstr Surg. 2014;133(5):1073–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Velázquez MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Velázquez, C., Pestana, I.A. (2018). New Technology and Techniques in Breast Reconstruction. In: Howard-McNatt, M. (eds) Changing Paradigms in the Management of Breast Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-60336-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60336-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60335-3

  • Online ISBN: 978-3-319-60336-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics