Skip to main content

Platelet Dysfunction in Type-2 Diabetes Mellitus

  • Chapter
  • First Online:
Mechanisms of Vascular Defects in Diabetes Mellitus

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 17))

  • 1410 Accesses

Abstract

According to the Diabetes Atlas of the World, published by the International Diabetes Federation (IDF Diabetes Atlas, 7th edn, 2015), India has currently, over 70 million subjects with type-2 diabetes and China, 110 million subjects. The number of adults estimated to be living with diabetes has reached 422 million worldwide, nearly four-fold increase from 1980 figures, according to a World Health Organization (WHO) report (2014). Non-communicable Disease Risk Factor Task Force in their article in Lancet (April 2016) summarize, that if the year 2000 trends in prevalence of diabetes continues, It will not be possible to reach the Millennium Goals (www.un.org/millenniumgoals) of keeping the incidence of type-2 diabetes in 2025, at the 2010 level. The collective prediction of this study group has already come true. Patients with type-2 diabetes carry an equivalent or greater cardiovascular risk to that of a non-diabetic, who has already experienced a coronary event. The risk for acute coronary event in this population seems to be 2–3 times higher than non-diabetic subjects. It is a potentially fatal, chronic disease, whose risks can be prevented by better management of known risks and lifestyle changes. Inflammation, oxidative stress, hyperglycemia, endothelial dysfunction, altered hemorheology and hyper-platelet and coagulation activation pathways, seem to contribute significantly to the clinical complications of type-2 diabetes. In this article, we provide a brief overview on, vascular dysfunction, platelet biochemistry, physiology and altered function, as it relates to the clinical complications of adult on-set diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation (2015) IDF Diabetes Atlas, 7th edn. ISBN:978-2-930229-81-2

    Google Scholar 

  2. Mohan V, Rao GHR (2007) Type-2 diabetes in South Asians: epidemiology, risk factors and prevention. Jaypee Medical Publishers, New Delhi

    Book  Google Scholar 

  3. Rao GHR (1999) Handbook of platelet physiology and pharmacology. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  4. Gerrard JM, Stuart MJ, Rao GHR (1980) Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J Lab Clin Med 95:950–958

    CAS  PubMed  Google Scholar 

  5. Rao GHR (2011) Management of type-2 diabetes with anti-platelet therapies: special reference to aspirin. Front Biosci (Schol Ed) 1(3):1–15

    Article  CAS  Google Scholar 

  6. Rao GHR (2015) Non-traditional approaches to diagnosis and management of diabetes mellitus: point of view. J Diabetes Metab 6:489. doi:10.4172/2155-6156.1000489

    Article  Google Scholar 

  7. Rao GHR, Gandhi PG, Sharma V (2014) Clinical complications of type-2 diabetes mellitus in South Asians and Chinese populations: an overview. J Diabetes Metab 5:420. doi:10.4172/2155-6156.1000420

    Google Scholar 

  8. Gandhi PG, Rao GHR (2015) Detection of neuropathy using a sudomotor tests in type-2 diabetes. Degener Neurol Neuromuscul Dis 5:1–7. doi.org/10.2147/DNND.S75857

    CAS  Google Scholar 

  9. Maarek A, Gandhi PG, Rao GHR (2015) Identifying autonomic neuropathy and endothelial dysfunction in type-2 diabetic patients. EC Neurol 2:63–78

    Google Scholar 

  10. Sharma NR, GHR R (2016) Diabetes management: expectations and limitations. J Diabetes Metab 7:662. doi:10.4172/2155-6156.1000662

    Article  Google Scholar 

  11. Rao GHR (2016) Flow velocity, fluid dynamics and vascular pathophysiology. Sci Pages Heart 1:001. (In Press)

    Google Scholar 

  12. Brewer DB (2006) Schulz M (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Heamatol 133(3):251–258

    Article  Google Scholar 

  13. Rao GHR (1993) Physiology of blood platelet activation. Indian J Physiol Pharmacol 37(4):263–275

    CAS  PubMed  Google Scholar 

  14. O’Brien JR (1961) The adhesiveness of native platelets and its prevention. J Clin Pathol 14:140–149

    Article  PubMed  PubMed Central  Google Scholar 

  15. Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    Article  CAS  PubMed  Google Scholar 

  16. Marcus AJ, Zucker MB (1965) The physiology of blood platelets. Crune and Scrutton, New York

    Google Scholar 

  17. Kowlaski E, Niewiarowski S (1966) Biochemistry of blood platelets. Academic, New York

    Google Scholar 

  18. Caen J (1971) Platelet aggregation. Masson and Cie, Paris

    Google Scholar 

  19. Brinkhous KM, Sherman RW, Mostof FK (1971) The platelet. Williams Wilkins Co, Baltimore

    Google Scholar 

  20. Johnson SA (1971) The circulating platelets. Academic, New York

    Google Scholar 

  21. Weiss HJ (1972) Platelets and their role in hemostasis. Ann Rev New York Acad Sci 201:1–450

    Google Scholar 

  22. Phillips DR, Sherman MA (1986) Biochemistry of platelets. Academic, New York

    Google Scholar 

  23. Michelson AD (2012) Platelets, 3rd edn. Academic, New York. ISBN:9780123878373

    Google Scholar 

  24. Seiss W (1989) Molecular mechanisms of platelet activation. Physiol Rev 69:59–178

    Google Scholar 

  25. Weiss HJ (1975) Platelet physiology and abnormalities of platelet function. N Engl J Med 293:531–541

    Article  CAS  PubMed  Google Scholar 

  26. O’Donnell VB, Murphy RC, Watson SP (2014) Platelet Lipidomics: modern day perspectives on lipid discovery and characterization in platelets. Circ Res 114:1185–1203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gerrard JM, White JG, Rao GHR et al (1976) Localization of platelet prostaglandin production in the platelet dense tubular system. Am J Pathol 83:283–299

    CAS  PubMed  PubMed Central  Google Scholar 

  28. White JG, Clawson CC (1974) The surface-connected canalicular system in blood platelets- a fenestrated membrane system. Am J Pathol 75:301–314

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruoslahti E, Pierchbacher MD (1987) New perspectives in cell adhesion. RGD and integrins. Science 238:491–497

    Article  CAS  PubMed  Google Scholar 

  30. Rao GHR, Peller JD, Semba CP et al (1986) Influence of the calciumsensitive flourophores Quin 2 on platelet function. Blood 67:354–361

    CAS  PubMed  Google Scholar 

  31. White JG (1987) Platelet structure physiology: the ultrastructure of adhesion, secretion and aggregation in arterial thrombosis. Cardiovasc Res 18:13–23

    CAS  Google Scholar 

  32. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    Article  CAS  PubMed  Google Scholar 

  33. Rana RS, Hokin LE (1990) Role of phosphoinositides in trans membranesignaling. Physiol Rev 70:115–164

    CAS  PubMed  Google Scholar 

  34. Rao GHR (1993) Signal transduction, second messengers and platelet function. J Lab Clin Med 121:18–21

    CAS  PubMed  Google Scholar 

  35. Rao GHR (1994) Signal transduction, second messengers and platelet pharmacology. Pharmacology 13:39–44

    Google Scholar 

  36. Rao GHR (1998) Role of adhesion and aggregation in thrombus formation. Thromb Haemost 79:454

    CAS  PubMed  Google Scholar 

  37. Harris RA, Nishiyama SK, Wray W (2010) Ultrasound assessment of flow-mediated dilation. Hypertension 55:1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nicolaides A (2010) Screening for cardiovascular risk. Br J Cardiol 17:105–107

    Google Scholar 

  39. Nicolaides A, Panayiotou AG (2016) Screening for atherosclerotic and cardiovascular risk using ultrasound. J Am Coll Cardiol:1275–1277

    Google Scholar 

  40. Burris SM, Smith CN, Rao GHR et al (1987) Aspirin treatment reduces platelet resistance to deformation. Arterioscler Thromb Vasc Biol 7:385–388

    Article  CAS  Google Scholar 

  41. McMillan DE (1983) The effect of diabetes on blood flow properties. Diabetes 32(suppl 2):56–63

    Article  PubMed  Google Scholar 

  42. Yi C, Mooney MP, Cho DJ (2008) Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol 2(6):1130–1138

    Article  Google Scholar 

  43. Le Devehat C (1989) Blood rheology abnormalities in diabetes mellitus. J Mal Vasc 14(1):64–67

    PubMed  Google Scholar 

  44. Negrean V, Suciu I, Sampelean D et al (2004) Rheological changes in diabetic microangiopathy. Rom J Intern Med 42(2):407–413

    CAS  PubMed  Google Scholar 

  45. Qasem A, Abdel-Aty A, Abu-Suwa H et al (2016) Oxidative stress due to Mycobacterium avium subspecies paratuberculosis (MAP) infection up-regulates selenium dependent GPx activity. Gut Pathogens 8:12. doi:10.1186/s13099-016-0090-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Al-Maskari AY, Al-Maskari MY, Al-Sudairy S (2011) Oral manifestation and complications of diabetes mellitus; a review. Sultan Qaboos Univ Med J 11(2):179–186

    PubMed  PubMed Central  Google Scholar 

  47. Herzberg MC, Meyer MW (1998) Dental plaque, platelets and cardiovascular disease. Ann Periodont 3(1):151–160

    Article  CAS  Google Scholar 

  48. Iacopino AM (2001) Periodontitis and diabetes interrelationships: role of inflammation. Ann Periodont 6(1):125–137

    Article  CAS  Google Scholar 

  49. Varela-Lopez A, Quiles J, Coredero M et al (2015) Oxidative stress and dietary fat in relation to periodontal disease. Antioxidants 4(2):322–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duncan BB, Schmidt MI, Pankow JS et al (2003) Low-grade systemic inflammation and the development of type-diabetes; the atherosclerosis risk in communities study. Diabetes 52:1799–1805

    Article  CAS  PubMed  Google Scholar 

  51. Pradhan AD, Manson JE, Rifai N et al (2001) C-reactive protein, interleukin 6, and risk for developing type-2 diabetes mellitus. JAMA 286:327–334

    Article  CAS  PubMed  Google Scholar 

  52. Barzilay JI, Abraham L, Heckbert SR et al (2001) The relation of markers of inflammation to the development of glucose disorders in the elderly: the cardiovascular health study. Diabetes Care 25:2016–2021

    Google Scholar 

  53. Ford ES (2002) Leukocyte count, erythrocyte sedimentation rate, and diabetes incidence in a national sample of US adults. Am J Epidemiol 155:57–64

    Article  PubMed  Google Scholar 

  54. Balasubramanyam M, Adaikalakoteswari A, Sampathkumar R et al (2007) Oxidative stress in Asian Indians with type-2 diabetes. In: Mohan V, Rao GHR (eds) Type-2 diabetes in South Asians; epidemiology, risk factors and prevention. Jaypee Medical Publishers, New Delhi, pp 164–173

    Google Scholar 

  55. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  CAS  PubMed  Google Scholar 

  56. Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26:1589–1596

    Article  CAS  PubMed  Google Scholar 

  57. Bunn FH, Gabbay KH, Gallop PM (2007) The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27

    Article  Google Scholar 

  58. Sudic D, Razmara M, Forslund M et al (2006) High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br J Heamatol 133:315–322

    Article  CAS  Google Scholar 

  59. Shechter M, Merz CN, Paul-Labrador MJ et al (2000) Blood glucose and platelet-dependent thrombosis in patients with coronary artery disease. J Am Coll Cardiol 35(2):300–307

    Article  CAS  PubMed  Google Scholar 

  60. Vinik AI, Erbas T, Park TS et al (2001) Platelet dysfunction in type-2 diabetes. Diabetes Care 24(8):1476–1485

    Article  CAS  PubMed  Google Scholar 

  61. Porta M, La Selva M, Molinatti P et al (1987) Endothelial cell function in diabetic microangiopathy. Diabetologia 30:601–609

    Article  CAS  PubMed  Google Scholar 

  62. Tesfaye S, Malik R, Ward JD (1994) Vascular factors in diabetic neuropathy. Diabetologia 37(9):847–854

    Article  CAS  PubMed  Google Scholar 

  63. Colwell JA, Halushka PV, Sarji K et al (1976) Altered platelet function in diabetes mellitus. Diabetes 25(2):826–831

    CAS  PubMed  Google Scholar 

  64. Halushka PV, Lurie D, Colwell JA (1977) Increased synthesis of prostaglandin E-like material by platelets from patients with diabetes mellitus. N Engl J Med:1306–1310

    Google Scholar 

  65. Eldor A, Merin S, Bar-on H (1978) The effect of streptozotocin diabetes on platelet function in rats. Diabetes 27(3):342–350

    Article  Google Scholar 

  66. Gensini GF, Abbate R, Favilla S (1979) Changes of platelet function and blood clotting in diabetes mellitus. Thromb Haemost 42(11):983–993

    CAS  PubMed  Google Scholar 

  67. Coller BS, Frank RN, Milton RC et al (1978) Plasma cofactors of platelet function: correlation with diabetic retinopathy and hemoglobin A1c: studies in diabetic patients and normal persons. Ann Intern Med 88(3):311–316

    Article  CAS  PubMed  Google Scholar 

  68. Colwell JA, Halushka PV (1980) Platelet function in diabetes mellitus. Br J Heamatol 44(4):521–526

    Article  CAS  Google Scholar 

  69. Colwell JA, Lopes-Virella M, Halushka PV (1981) Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care 4:121–127

    Article  CAS  PubMed  Google Scholar 

  70. Mustard JF, Packham MA (1984) Platelets and diabetes mellitus. N Engl J Med 311:665–667

    Article  Google Scholar 

  71. Di Minno G, Silver MJ, Cerbone et al (1985) Increased binding of fibrinogen to platelets in diabetes: the role of prostaglandins and thromboxanes. Blood 65:156–162

    Google Scholar 

  72. Colwell JA, Winocour PD, Lopes-Virella M et al (1983) New concepts about the pathogenesis of atherosclerosis in diabetes mellitus. Am J Med 75(Supp 5B):67–80

    Article  CAS  PubMed  Google Scholar 

  73. Halushka PV, Rogers RC, Loadhold CB et al (1981) Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 97:87–96

    CAS  PubMed  Google Scholar 

  74. Mayfield RK, Halushka PV, Wohltmann HJ et al (1985) Platelet function during continuous insulin infusion treatment in insulin-dependent diabetic patients. Diabetes 34:1127–1133

    Article  CAS  PubMed  Google Scholar 

  75. Davi G, Averna M, Catalano J et al (1989) Platelet function in patients with type-2 diabetes mellitus: the effect of glycaemic control. Diabetes Res 10:7–12

    CAS  PubMed  Google Scholar 

  76. Le Pape A, Gutman N, Guitton JD et al (1983) Non enzymatic glycosylation increases platelet aggregating potency of collagen from placenta of diabetic human beings. Biochem Biophys Res Commun 111:602–610

    Article  PubMed  Google Scholar 

  77. Davi G, Catalano I, Averna M et al (1990) Thromboxane biosynthesis and platelet function in type-2 diabetes mellitus. N Engl J Med 322:1760–1774

    Article  Google Scholar 

  78. Alessandrini P, McRae J, Freman S (1988) Thromboxane biosynthesis and platelet function in type 1 diabetes mellitus. N Engl J Med 319:208–212

    Article  CAS  PubMed  Google Scholar 

  79. Eikelboom JW, Jeffrey IW, Johnston M et al (2002) Aspirin resistant thromboxane and the risk for myocardial infarction, stroke or cardiovascular death in patients at high risk for cardiovascular events. Circulation 105:1150–1155

    Article  CAS  Google Scholar 

  80. Cipollone F, Ciabattoni G, Patrignani P et al (2000) Oxidant stress and aspirin insensitive thromboxane biosynthesis in severe unstable angina. Circulation 102:1007–1012

    Article  CAS  PubMed  Google Scholar 

  81. Ceriello A (1997) Acute hyperglycemia and oxidative stress generation. Diabet Med 14:545–549

    Article  Google Scholar 

  82. Hiramatsu K, Arimori S (1988) Increased superoxide production by mono nuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 37:832–837

    Article  CAS  PubMed  Google Scholar 

  83. Laakso M (1999) Hyperglycemia and cardiovascular disease in type-2 diabetes. Diabetes 48:932–942

    Article  Google Scholar 

  84. Listed NA (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The diabetes control and complications trial research group. N Engl J Med 329:977–986

    Article  Google Scholar 

  85. Vericel E, Januel C, Carreras M et al (2004) Diabetic patients without vascular complications display enhanced basal platelet activation and decreased antioxidants. Diabetes 53(40):1046–1051

    Article  CAS  PubMed  Google Scholar 

  86. Dierckx N, Horvath G, van Gills C et al (2003) Oxidative stress status in patients with diabetes mellitus: relationship to diet. Eur J Clin Nutr 57:999–1008

    Article  CAS  PubMed  Google Scholar 

  87. Hill TD, White JG, Rao GHR et al (1989) Platelet hypersensitivity induced by 1-chloro-2, 4-dinitrobenzene, hydroperoxides and inhibition of lipoxygenase. Thromb Res 53(5):447–455

    Article  CAS  PubMed  Google Scholar 

  88. Hill TD, White JG, Rao GHR (1989) The influence of glutathione depleting agents on human function. Thromb Res 53:457–467

    Article  CAS  PubMed  Google Scholar 

  89. Hill TD, White JG, Rao GHR (1989) Role of glutathione and glutathione peroxidase in human platelet arachidonic acid metabolism. Prostaglandins 38:21–32

    Article  CAS  PubMed  Google Scholar 

  90. Radha E, Hill TD, Rao GHR et al (1985) Glutathione levels in human platelets display a circadian rhythm in vitro. Biochem Biophs Res Commun 117:549–556

    Google Scholar 

  91. Li Y, Woo V, Bose R (2001) Platelet hypersensitivity and abnormal Ca2+homeostasis in diabetes mellitus. Am J Physiol-Heart Circ Physiol 280(4):H1480–H1H89

    CAS  PubMed  Google Scholar 

  92. Ferreira IA, Astrid M, Marion AH et al (2001) Platelet inhibition by insulin is absent in type-2 diabetes. Am J Physiol Heart Circ Physiol 280:H1480–H1H89

    Google Scholar 

  93. Witkop CJ, Babcock MN, Rao GHR et al (1990) Albinism and Hermansky-Pudlak syndrome in Puerto Rico. Biol Assoc Puerto Rico 83:333–339

    Google Scholar 

  94. Rao GHR, Gerrard JW, White JG (1981) Platelet aggregation independent of ADP release or prostaglandin synthesis in patients with Hermansky-Pudlak syndrome. Prostaglandins Med 6:459–472

    Article  CAS  PubMed  Google Scholar 

  95. Rao GHR, White JG (1981) Epinephrine potentiation of arachidonate induced aggregation of cyclooxygenase deficient platelets. Am J Heamatol 11:355–366

    Article  CAS  Google Scholar 

  96. Rao GHR, Johnson GW, White JG (1980) Influence of epinephrine on aggregation response of aspirin-treated platelets. Prostaglandins Med 5:45–58

    Article  CAS  PubMed  Google Scholar 

  97. Rao GHR, White JG (1985) Role of arachidonic acid metabolism in human platelet activation and irreversible aggregation. Am J Heamatol 19:339–347

    Article  CAS  Google Scholar 

  98. Rao GHR, White JG (1982) Platelet activating factor (PAF) causes human platelet aggregation through the mechanism of membrane modulation. Prost Leuko Med 9:459–472

    Article  CAS  Google Scholar 

  99. Rao GHR, White JG (1985) Disaggregation and reaggregation and irreversible aggregation of platelets: a method for more complete evaluation of anti-platelet drugs. Agents Actions 16:425–434

    Article  CAS  PubMed  Google Scholar 

  100. Cox AC, Carrol RC, White JG et al (1984) Recycling of platelet phosphorylation and cytoskeletal assembly. J Cell Biol 98:8–15

    Article  CAS  PubMed  Google Scholar 

  101. Rao GHR, Escolar G, White JG (1986) Epinephrine reverses the inhibitory influence of aspirin on platelet vessel-wall interactions. Thromb Res 44:65–74

    Article  CAS  PubMed  Google Scholar 

  102. Rao GHR (1987) Influence of antiplatelet drugs on platelet vessel wall interactions. Prost Leuko Med 30:133–145

    Article  CAS  Google Scholar 

  103. Schneider DJ (2009) Factors contributing to increase platelet reactivity in people with diabetes. Diabetes Care 32(4):525–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Knighton DR, Ciresi KF, Austin LL et al (1986) Classification and treatment of chronic non healing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF). Ann Surg 204(3):322–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Knighton DR, Hunt TK, Tharkal KK et al (1982) Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann Surg 196(4):379–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Caruso AB, Petralia S, Conoci S et al (2007) Photo delivery of nitric oxide from water-soluble platinum nanoparticles. J Am Chem Soc 129(3):480–481

    Article  CAS  PubMed  Google Scholar 

  107. Avike FI, Kwan C (2003) Nitric oxide, human disease and the herbal products that affect the nitric oxide signaling pathway. Clin Exp Pharmacol Physiol 30:605–615

    Article  Google Scholar 

  108. Patrignani P, Filabozzi P, Patrono C (1982) Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest 69(6):1366–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rao GHR, Radha E, White JG (1983) Effect of docosahexaenoic acid (DHA) on arachidonic acid metabolism and platelet function. Biochem Biophys Res Commun 117:549–556

    Article  CAS  PubMed  Google Scholar 

  110. Rao GHR, Kishore NP, Peller JD et al (1987) Influence of polyenoic acid on arachidonic acid metabolism and platelet function. In: Gallo L (ed) Cardiovascular disease. Plenum Press, New York, pp 495–405

    Chapter  Google Scholar 

  111. Nagakawa Y, Otima H, Harasawa M et al (1983) Effect of Eicosapentaenoic acid on the platelet aggregation and composition of fatty acids in man. A double blind study. Atherosclerosis 47:71–75

    Article  CAS  PubMed  Google Scholar 

  112. Terano T, Hirai A, Hamazaki T et al (1983) Effect of administration of highly purified EPA on platelet function, blood viscosity, and red cell deformability in healthy subject. Atherosclerosis 46:321–331

    Article  CAS  PubMed  Google Scholar 

  113. Woodman RJ, Mori TA, Burke V et al (2003) Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive diabetic patients. Atherosclerosis 166(1):85–93

    Article  CAS  PubMed  Google Scholar 

  114. Phang M, Linez LF, Garg ML (2013) Eicosapentaenoic acid and docosahexaenoic acid supplementation reduces platelet aggregation and hemostatic markers differentially in men and women. J Nutr. doi:10.39845/jn.112.171249

  115. Antithrombotic Trialists’ (ATT) Collaboration, Baigent C, Blackwell L, Collins R et al (2009) Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomized trials. Lancet 373(9678):1849–1860

    Article  CAS  Google Scholar 

  116. Nicolucci A, Standl E (2011) Antiplatelet therapy for every diabetic person? Diabetes Care 34(2):2150–2154

    Google Scholar 

  117. Angiolilllo DJ (2009) Antiplatelet therapy in diabetes: efficacy and limitations of current treatment strategies and future directions. Diabetes Care 32(4):531–540

    Article  CAS  Google Scholar 

  118. American Diabetes Association (1998) Aspirin Therapy in Diabetes: Position Statement. Clin Diab (Reprinted from Diab Care 21:45–46)

    Google Scholar 

  119. Belch H, MacCruish A, Campbell I (2008) The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomized controlled trial of aspirin and antioxidants with diabetes and asymptomatic peripheral arterial disease. BMJ 337:a1840

    Article  PubMed  PubMed Central  Google Scholar 

  120. CAPRIE Steering Committee (2002) A randomized, blinded trial of clopidogrel versus aspirin in patients at risk for ischemic events (CAPRIE). Lancet 348:1329–1339

    Google Scholar 

  121. Bhatt DL, Marso SP, Hirsch AT et al (2002) Amplified benefit of clopidogrel in patients with diabetes mellitus. Am J Cardiol 90:625–628

    Article  PubMed  Google Scholar 

  122. Wiviott SD, Antman EM, Gibson CM et al (2006) Evaluation of Prasugrel compared with Clopidogrel in patients with acute coronary syndromes: design and rationale for the trial to assess improvements in therapeutic outcomes by optimizing platelet inhibition with prasugrel thrombolysis in myocardial infarction 38 (TRTON-TIMI-38). Am Heart J 152(4):627–635

    Article  CAS  PubMed  Google Scholar 

  123. Angiolollo DJ, Capranzano P, Goto S et al (2008) A randomized study assessing the impact of Cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy. Results of OPTIMUS-2 study. Eur Heart J 29:2202–2211

    Article  CAS  Google Scholar 

  124. Kokoska LA, Wilheim SM, Garwood CL et al (2016) Aspirin for primary prevention of cardiovascular disease in patients with diabetes: a meta-analysis. Diab Res Clin Pract 120:31–39

    Article  CAS  Google Scholar 

  125. American Diabetes Association (2002) Implications of the United Kingdom prospective diabetes study. Diabetes Care 25(1):s28–s32

    Google Scholar 

  126. Lloyd-Jones DM, Hong Y, Labarthe D et al (2010) American Heart Association Strategic Planning Task Force and Statistics Committee. Defining and setting national goals for cardiovascular health promotion and disease reduction. The American Heart Association’s strategic and impact goal through 2020 and beyond. Circulation 121:586–613

    Article  PubMed  Google Scholar 

  127. Yusuf S, Hawken S, Ounpuu S et al (2004) INTERHEART Study Investigation. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case control study. Lancet 364:937–952

    Article  Google Scholar 

  128. Rao GHR (2016) Contributions of the South Asian Society on Atherosclerosis and Thrombosis and the Indian Society on Atherosclerosis Research, to our understanding of Atherosclerosis and Thrombosis. J Clin Prevent Cardiol. doi:10.4103/2250-3528.186501

  129. Rao GHR, Nagendra HR (2012) Holistic approach for prevention of heart disease and diabetes. J Clin Prevent Cardiol 2:231–238

    Google Scholar 

  130. Knowler WC, Barrett-Connor E, Fowler SA et al (2002) Diabetes Prevention Program Research Group. Reduction in the incidence of type-2 diabetes with lifestyle intervention and metformin. N Engl J Med 346:393–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundu H. R. Rao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rao, G.H.R. (2017). Platelet Dysfunction in Type-2 Diabetes Mellitus. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_18

Download citation

Publish with us

Policies and ethics