Skip to main content

Understanding the Physiological Significance of GPCR Dimers and Oligomers

  • Chapter
  • First Online:
G-Protein-Coupled Receptor Dimers

Part of the book series: The Receptors ((REC,volume 33))

Abstract

The significance of G protein-coupled receptor (GPCR) oligomerization has been a subject of intense study which still remains controversial. Functional class C GPCRs are well accepted as obligate dimers but scepticism still remains with regards to the generalizability of this phenomenon when considering other classes of GPCRs. Here, we focus on understanding the organization and relationships between receptor equivalents in oligomeric receptor complexes. We discuss receptor properties such as ligand binding cooperativity which can be best explained in the context of functional oligomeric entities, and the asymmetries in receptor structure and function created by oligomers as well as their implications for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouvier M, Hébert T. CrossTalk proposal: weighing the evidence for class A GPCR dimers, the evidence favours dimers. J Physiol. 2014;592(12):2439–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lambert NA, Javitch JA. CrossTalk opposing view: weighing the evidence for class A GPCR dimers, the jury is still out. J Physiol. 2014;592(12):2443–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bouvier M, Hébert T. Rebuttal from Michel Bouvier and Terence E. Hébert J Physiol. 2014;592(12):2447.

    CAS  PubMed  Google Scholar 

  4. Lambert NA, Javitch JA. Rebuttal from Nevin A. Lambert and Jonathan A. Javitch. J Physiol. 2014;592(12):2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KDG, Devi LA. G protein–coupled receptor heteromers. Annu Rev Pharmacol Toxicol. 2016;56(1):403–25.

    Article  CAS  PubMed  Google Scholar 

  6. Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol. 2016;57(1):R59–80.

    Article  CAS  PubMed  Google Scholar 

  7. Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G. Basic evidence for class A G protein-coupled receptor heteromerization. Front Pharmacol. 2016;7

    Google Scholar 

  8. Whorton MR, Jastrzebska B, Park PS-H, Fotiadis D, Engel A, Palczewski K, et al. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem. 2008;283(7):4387–94.

    Article  CAS  PubMed  Google Scholar 

  9. Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci. 2007;104(18):7682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hébert T, Bouvier M. Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem Cell Biol. 1998;76(1):1–11.

    Article  PubMed  Google Scholar 

  11. Prinster SC, Hague C, Hall RA. Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol Rev. 2005;57(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  12. Bulenger S, Marullo S, Bouvier M. Emerging role of homo- and heterodimerization in G protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci. 2005;26(3):131–7.

    Article  CAS  PubMed  Google Scholar 

  13. Milligan G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol. 2009;158(1):5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fonseca JM, Lambert NA. Instability of a class A G protein-coupled receptor oligomer interface. Mol Pharmacol. 2009;75(6):1296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lan T-H, Kuravi S, Lambert NA. Internalization dissociates β2-adrenergic receptors. PLoS One. 2011;6(2):e17361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A. 2010;107:2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 2011;192(3):463–80.

    Google Scholar 

  18. Veya L, Piguet J, Vogel H. Single molecule imaging deciphers the relation between mobility and signaling of a prototypical G protein-coupled receptor in living cells. J Biol Chem. 2015;290(46):27723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pediani JD, Ward RJ, Godin AG, Marsango S, Milligan G. Dynamic regulation of quaternary organization of the M1 muscarinic receptor by subtype-selective antagonist drugs. J Biol Chem. 2016;291(25):13132–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, et al. Revealing G protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J. 2016;283(7):1197–217.

    Article  CAS  PubMed  Google Scholar 

  21. Shivnaraine RV, Kelly B, Sankar KS, Redka DyS, Han YR, Huang F, et al. Allosteric modulation in monomers and oligomers of a G protein-coupled receptor. elife 2016;5:e11685.

    Google Scholar 

  22. De Lean A, Stadel JM, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980;255(15):7108–17.

    PubMed  Google Scholar 

  23. Chidiac P, Green MA, Pawagi AB, Wells JW. Cardiac muscarinic receptors. cooperativity as the basis for multiple states of affinity. Biochemistry. 1997;36(24):7361–79.

    Article  CAS  PubMed  Google Scholar 

  24. Green MA, Chidiac P, Wells JW. Cardiac muscarinic receptors. Relationship between the G protein and multiple states of affinity. Biochemistry. 1997;36(24):7380–94.

    Article  CAS  PubMed  Google Scholar 

  25. Ma AWS, Redka DyS, Pisterzi LF, Angers S, Wells JW. Recovery of oligomers and cooperativity when monomers of the M2 muscarinic cholinergic receptor are reconstituted into phospholipid vesicles. Biochemistry 2007;46(26):7907-7927.

    Google Scholar 

  26. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, et al. Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the Protean Effects of “Selective” Antagonists. J Biol Chem. 2009;284(45):31270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peterson GL, Herron GS, Yamaki M, Fullerton DS, Schimerlik MI. Purification of the muscarinic acetylcholine receptor from porcine atria. Proc Natl Acad Sci U S A. 1984;81(15):4993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wreggett KA, Wells JW. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors. J Biol Chem. 1995;270(38):22488–99.

    Article  CAS  PubMed  Google Scholar 

  29. Redka DS, Heerklotz H, Wells JW. Efficacy as an intrinsic property of the M2 muscarinic receptor in its tetrameric state. Biochemistry. 2013;52(42):7405–27.

    Article  CAS  PubMed  Google Scholar 

  30. Ma AWS, Pawagi AB, Wells JW. Heterooligomers of the muscarinic receptor and G proteins purified from porcine atria. Biochem Biophys Res Commun. 2008;374(1):128–33.

    Article  CAS  PubMed  Google Scholar 

  31. Rebois RV, Robitaille M, Pétrin D, Zylbergold P, Trieu P, Hébert TE. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells. Methods. 2008;45(3):214–8.

    Article  CAS  PubMed  Google Scholar 

  32. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 2008;27(17):2293–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vidi P-A, Chen J, Irudayaraj JMK, Watts VJ. Adenosine A2A receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett. 2008;582(29):3985–90.

    Article  CAS  PubMed  Google Scholar 

  34. Vidi P-A, Chemel BR, Hu C-D, Watts VJ. Ligand-dependent oligomerization of dopamine D2 and adenosine A2A receptors in living neuronal cells. Mol Pharmacol. 2008;74(3):544–51.

    Article  CAS  PubMed  Google Scholar 

  35. Carriba P, Navarro G, Ciruela F, Ferre S, Casado V, Agnati L, et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods. 2008;5(8):727–33.

    Article  CAS  PubMed  Google Scholar 

  36. Gandia J, Galino J, Amaral OB, Soriano A, Lluís C, Franco R, et al. Detection of higher-order G protein-coupled receptor oligomers by a combined BRET–BiFC technique. FEBS Lett. 2008;582(20):2979–84.

    Article  CAS  PubMed  Google Scholar 

  37. Hamatake M, Aoki T, Futahashi Y, Urano E, Yamamoto N, Komano J. Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci. 2009;100(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  38. Pisterzi LF, Jansma DB, Georgiou J, Woodside MJ, Chou JT-C, Angers S, et al. Oligomeric size of the M2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J Biol Chem. 2010;285(22):16723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fung JJ, Deupi X, Pardo L, Yao XJ, Velez‐Ruiz GA, DeVree BT, et al. Ligand‐regulated oligomerization of β2‐adrenoceptors in a model lipid bilayer. EMBO J. 2009;28(21):3315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kern A, Albarran-Zeckler R, Walsh Heidi E, Smith R G. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron. 2012;73(2):317–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rashid AJ, So CH, Kong MMC, Furtak T, El-Ghundi M, Cheng R, et al. D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci. 2007;104(2):654–9.

    Article  CAS  PubMed  Google Scholar 

  42. Frederick AL, Yano H, Trifilieff P, Vishwasrao HD, Biezonski D, Meszaros J, et al. Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry. 2015;20(11):1373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. Oligomerization of opioid receptors with β2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci. 2001;98(1):343–8.

    CAS  PubMed  Google Scholar 

  44. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer: the human δ-opioid receptor displays constitutive oligomerization at the cell surface which is not regulated by receptor occupancy. J Biol Chem. 2001;276(17):14092–9.

    Article  CAS  PubMed  Google Scholar 

  45. McGraw DW, Mihlbachler KA, Schwarb MR, Rahman FF, Small KM, Almoosa KF, et al. Airway smooth muscle prostaglandin-EP1 receptors directly modulate β2-adrenergic receptors within a unique heterodimeric complex. J Clin Invest. 2006;116(5):1400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haack KKV, Tougas MR, Jones KT, El-Dahr SS, Radhakrishna H, McCarty NA. A Novel bioassay for detecting GPCR heterodimerization: transactivation of β2 adrenergic receptor by bradykinin receptor. J Biomol Screen. 2010;15(3):251–60.

    Article  CAS  PubMed  Google Scholar 

  47. Barki-Harrington L, Luttrell L, Rockman H. Dual inhibition of β-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor–receptor interaction in vivo. Circulation. 2003;108(13):1611–8.

    Article  CAS  PubMed  Google Scholar 

  48. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol. 2009;5(9):688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lane JR, Donthamsetti P, Shonberg J, Draper-Joyce CJ, Dentry S, Michino M. A new mechanism of allostery in a G protein-coupled receptor dimer. Nat Chem Biol. 2014;10

    Google Scholar 

  50. Wrzal PK, Goupil E, Laporte SA, Hébert TE, Zingg HH. Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: implications for ERK1/2 activation in human myometrial cells. Cell Signal. 2012;24(1):333–41.

    Article  CAS  PubMed  Google Scholar 

  51. Wrzal PK, Devost D, Pétrin D, Goupil E, Iorio-Morin C, Laporte SA, et al. Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cell Signal. 2012;24(1):342–50.

    Article  CAS  PubMed  Google Scholar 

  52. Goupil E, Fillion D, Clément S, Luo X, Devost D, Sleno R, et al. Angiotensin II type I and prostaglandin F2α receptors cooperatively modulate signaling in vascular smooth muscle cells. J Biol Chem. 2015;290(5):3137–48.

    Article  CAS  PubMed  Google Scholar 

  53. Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev. 2009;89(2):411–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nishimura A, Sunggip C, Tozaki-Saitoh H, Shimauchi T, Numaga-Tomita T, Hirano K, et al. Purinergic P2Y6 receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II–induced hypertension. Sci Signal. 2016;9(411):ra7–ra.

    Google Scholar 

  55. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330(6007):1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 2012;485:321–6.

    Google Scholar 

  57. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature. 2012;485(7398):327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katritch V, Cherezov V, Stevens RC. Structure-function of the G protein–coupled receptor superfamily. Annu Rev Pharmacol Toxicol. 2013;53(1):531–56.

    Article  CAS  PubMed  Google Scholar 

  59. Huang J, Chen S, Zhang JJ, Huang X-Y. Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state. Nat Struct Mol Biol. 2013;20(4):419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cordomí A, Navarro G, Aymerich MS, Franco R. Structures for G protein-coupled receptor tetramers in complex with G proteins. Trends Biochem Sci. 2015;40(10):548–51.

    Article  PubMed  Google Scholar 

  61. Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. 2012;33(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  62. Milligan G. G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim Biophys Acta Biomembr. 2007;1768(4):825–35.

    Article  CAS  Google Scholar 

  63. Agnati LF, Guidolin D, Albertin G, Trivello E, Ciruela F, Genedani S, et al. An integrated view on the role of receptor mosaics at perisynaptic level: focus on adenosine A2A, dopamine D2, cannabinoid CB1, and metabotropic glutamate mGlu5 receptors. J Recept Signal Transd. 2010;30(5):355–69.

    Article  CAS  Google Scholar 

  64. Salahpour A, Angers S, Mercier J-F, Lagacé M, Marullo S, Bouvier M. Homodimerization of the β2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem. 2004;279(32):33390–7.

    Article  CAS  PubMed  Google Scholar 

  65. Dupré DJ, Robitaille M, Éthier N, Villeneuve LR, Mamarbachi AM, Hébert TE. Seven transmembrane receptor core signaling complexes are assembled prior to plasma membrane trafficking. J Biol Chem. 2006;281(45):34561–73.

    Article  PubMed  Google Scholar 

  66. Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G. The α1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol. 2007;71(4):1015–29.

    Article  CAS  PubMed  Google Scholar 

  67. Milligan G. The role of dimerisation in the cellular trafficking of G protein-coupled receptors. Curr Opin Pharmacol. 2010;10(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  68. Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K. Disruption of rhodopsin dimerization with synthetic peptides targeting an interaction interface. J Biol Chem. 2015;290(42):25728–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hauser MA, Schaeuble K, Kindinger I, Impellizzieri D, Krueger WA, Hauck CR, et al. Inflammation-induced CCR7 oligomers Form scaffolds to integrate distinct signaling pathways for efficient cell migration. Immunity. 2016;44(1):59–72.

    Article  CAS  PubMed  Google Scholar 

  70. Navarro G, Cordomí A, Zelman-Femiak M, Brugarolas M, Moreno E, Aguinaga D, et al. Quaternary structure of a G protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol. 2016;14(1):1–12.

    Article  Google Scholar 

  71. Pétrin D, Hébert TE. Imaging-based approaches to understanding G protein-coupled receptor signalling complexes. T Signal Transduction Protocols. Methods Mol Biol. 2011;756:37–60.

    Google Scholar 

  72. Rebois RV, Hébert TE. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels. 2003;9(3):169–94.

    Article  CAS  PubMed  Google Scholar 

  73. Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, et al. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem. 2002;277(48):46010–9.

    Article  CAS  PubMed  Google Scholar 

  74. Dupré DJ, Baragli A, Rebois RV, Ethier N, Hébert TE. Signalling complexes associated with adenylyl cyclase II are assembled during their biosynthesis. Cell Signal. 2007;19(3):481–9.

    Article  PubMed  Google Scholar 

  75. Baragli A, Grieco M, Trieu P, Villeneuve L, Hébert T. Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Gαs. Cell Signal. 2008;20(3):480–92.

    Article  CAS  PubMed  Google Scholar 

  76. David M, Richer M, Mamarbachi AM, Villeneuve LR, Dupré DJ, Hebert TE. Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal. 2006;18(12):2172–81.

    Article  CAS  PubMed  Google Scholar 

  77. Rebois RV, Robitaille M, Gales C, Dupré DJ, Baragli A, Trieu P, et al. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci. 2006;119(Pt 13):2807–18.

    Article  CAS  PubMed  Google Scholar 

  78. Robitaille M, Ramakrishnan N, Baragli A, Hébert TE. Intracellular trafficking and assembly of specific Kir3 channel/G protein complexes. Cell Signal. 2009;21(4):488–501.

    Article  CAS  PubMed  Google Scholar 

  79. Qin K, Dong C, Wu G, Lambert NA. Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers. Nat Chem Biol. 2011;7(10):740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Camp ND, Lee K-S, Wacker-Mhyre JL, Kountz TS, Park J-M, Harris D-A, et al. Individual protomers of a G protein-coupled receptor dimer integrate distinct functional modules. Cell Discovery. 2015;1:15011.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dupré DJ, Hébert TE. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal. 2006;18(10):1549–59.

    Article  PubMed  Google Scholar 

  82. Dong C, Filipeanu CM, Duvernay MT, Wu G. Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta. 2007;1768(4):853–70.

    Article  CAS  PubMed  Google Scholar 

  83. Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  84. Pétrin D, Hébert TE. The functional size of GPCRs – monomers, dimers or tetramers? Subcell Biochem. 2012;63:67–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research to T.E.H (MOP-130309). R.S. was awarded scholarships from the McGill CIHR Drug Development Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence E. Hébert Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sleno, R., Devost, D., Hébert, T.E. (2017). Understanding the Physiological Significance of GPCR Dimers and Oligomers. In: Herrick-Davis, K., Milligan, G., Di Giovanni, G. (eds) G-Protein-Coupled Receptor Dimers. The Receptors, vol 33. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60174-8_18

Download citation

Publish with us

Policies and ethics