Skip to main content

Mariculture

  • Chapter
  • First Online:
Handbook on Marine Environment Protection

Abstract

Mariculture is the cultivation of marine species for human-benefit. Mariculture is a rapidly growing sector and is making an increasingly important contribution to global supplies of high-quality food. Mariculture can be divided into high- and low-input categories depending on the extent to which feed and medicines are a core part of the operation. Examples of high- and low-input mariculture operations include the cultivation of salmon and mussels respectively. Mariculture has a number of impacts on the marine environment. These impacts include the spread of non-native species, genetic modification of sympatrics, negative-interaction with predators, local-scale organic enrichment and habitat modification, effects of chemotheraputants on non-target organisms and the transfer of parasites/disease to native stocks. Some impacts of mariculture are relatively well understood, at least in some locations, but research is very much ongoing as new mariculture challenges, demands and opportunities arise. Regulation of mariculture varies widely between nations and there remain questions about the spatial extent, and nature, of unacceptable changes attributable to mariculture and how to incorporate mariculture into marine spatial planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    Article  CAS  Google Scholar 

  • Aldred N, Clare AS (2014) Mini-review: impact and dynamics of surface fouling by solitary and compound ascidians. Biofouling 30:259–270

    Article  Google Scholar 

  • Alexander KA, Freeman S, Potts T (2016) Navigating uncertain waters: European public perceptions of integrated multi trophic aquaculture (IMTA). Environ Sci Pol 61:230–237

    Article  Google Scholar 

  • Anderson SS, Hawkins AD (1978) Scaring seals by sound. Mammal Rev 8:19–24

    Article  Google Scholar 

  • Ashton GV, Willis KJ, Cook EJ, Burrows M (2007) Distribution of the introduced amphipod, Caprella mutica Schurin, 1935 (Amphipoda: Caprellida: Caprellidae) on the west coast of Scotland and a review of its global distribution. Hydrobiologia 590:31–41

    Article  Google Scholar 

  • Berkeley A, Schlicke T, Hills A, Best J (n.d.) Modelling of emamectin benzoate (EmBZ) seabed residues – briefing note. Available from SEPA by request

    Google Scholar 

  • Black KS (1994) Bio-physical factors contributing to erosion resistance in natural cohesive sediments. Intercoh ‘94 – 4th Nearshore and estuarine cohesive sediment transport conference, Wallingford, England

    Google Scholar 

  • Black KD (1998) The environmental interactions associated with fish culture. In: Black KD, Pickering AD (eds) Biology of farmed fish. Sheffield Academic Press, Sheffield, pp 284–326

    Google Scholar 

  • Black KD, Cromey CJ, Dale A, Nickell TD (2009) Modelling benthic effects of large salmon cage farms in Scotland. Scottish Assocition for Marine Science, Oban, p 97

    Google Scholar 

  • Borines MG, McHenry MP, de Leon RL (2011) Integrated macroalgae production for sustainable bioethanol, aquaculture and agriculture in Pacific island nations. Biofuel Bioprod Bior 5:599–608

    Article  CAS  Google Scholar 

  • Bourret V, O'Reilly PT, Carr JW, Berg PR, Bernatchez L (2011) Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106:500–510

    Article  CAS  Google Scholar 

  • Brandt MJ, Hoeschle C, Diederichs A, Betke K, Matuschek R, Witte S, Nehls G (2013) Far-reaching effects of a seal scarer on harbour porpoises, Phocoena phocoena. Aquat Conserv Mar Freshw Ecosyst 23:222–232

    Article  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley MS, Rasmussen MB (2009). A review of the potential of marine algae as a source of biofuel in Ireland. http://www.seai.ie/Publications/Renewables_Publications_/Bioenergy/Algaereport.pdf, 88p

  • Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23

    Article  CAS  Google Scholar 

  • Callaway R, Shinn AP, Grenfell SE, Bron JE, Burnell G, Cook EJ, Crumlish M, Culloty S, Davidson K, Ellis RP, Flynn KJ, Fox C, Green DM, Hays GC, Hughes AD, Johnston E, Lowe CD, Lupatsch I, Malham S, Mendzil AF, Nickell T, Pickerell T, Rowley AF, Stanley MS, Tocher DR, Turnbull JF, Webb G, Wootton E, Shields RJ (2012) Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat Conserv Mar Freshw Ecosyst 22:389–421

    Article  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-Gonzalez JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Cook EJ, Ashton G, Campbell M, Coutts A, Gollasch S, Hewitt C, Liu H, Minchin D, Ruiz G, Shucksmith R (2008) Non-native aquaculture species releases: implications for aquatic ecosystems. In: Holmer M, Black K, Duarte CM, Marba N, Karakassis I (eds) Aquaculture in the ecosystem. Springer, Berlin, pp 155–184

    Chapter  Google Scholar 

  • Coram A, Gordon J, Thompson D, Northridge S (2014) Evaluating and assessing the relative effectiveness of non-lethal measures, including acoustic deterrent devices, on marine mammals. Marine Scotland Report available at http://www.gov.scot/Resource/0046/00462305.pdf. Last accessed July 2016

  • Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22:475–483

    Article  Google Scholar 

  • Costello MJ (2009) How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc R Soc Lond B Biol Sci 276:3385–3394

    Article  Google Scholar 

  • Cromey CJ, Nickell TD, Black KD (2002a) DEPOMOD – modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 214:211–239

    Article  Google Scholar 

  • Cromey CJ, Nickell TD, Black KD, Provost PG, Griffiths CR (2002b) Validation of a fish farm waste resuspension model by use of a particulate tracer discharged from a point source in a coastal environment. Estuaries 25:916–929

    Article  Google Scholar 

  • Darwall WRT, Costello MJ, Donnelly R, Lysaght S (1992) Implications of life-history strategies for a new wrasse fishery. J Fish Biol 41:111–123

    Article  Google Scholar 

  • Dutertre M, Beninger PG, Barille L, Papin M, Haure J (2010) Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Mar Environ Res 69:1–9

    Article  CAS  Google Scholar 

  • Fang J, Zhang J, Xiao T, Huang D, Liu S (2016) Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquac Environ Interact 8:201–205

    Article  Google Scholar 

  • FAO (2014a) FAO global aquaculture production volume and value statistics database updated to 2012. FAO Fisheries and Aquaculture Department, March 2014. ftp://ftp.fao.org/fi/stat/Overviews/AquacultureStatistics2012.pdf

  • FAO (2014b) Improving governance of aquaculture employment. A global assessment. FAO fisheries and aquaculture technical paper 575. http://www.fao.org/3/a-i3128e.pdf

  • FAO (2016) Statistical query result. Global aquaculture production online query: all continents, marine fishing areas, marine environment, all species, Year = 2014, Value = USD. http://www.fao.org/figis/servlet/TabSelector

  • Fiori E (2012) PhD thesis: Phytoplankton response to environmental variables and organic pollutants. Laboratory Cultures and Numerical Simulations Experiments, University of Bologna

    Google Scholar 

  • Fitridge I, Dempster T, Guenther J, de Nys R (2012) The impact and control of biofouling in marine aquaculture: a review. Biofouling 28:649–669

    Article  Google Scholar 

  • Goetz T, Janik VM (2013) Acoustic deterrent devices to prevent pinniped depredation: efficiency, conservation concerns and possible solutions. Mar Ecol Prog Ser 492:285

    Article  Google Scholar 

  • Grant J, Bugden G, Horne E, Archambault MC, Carreau M (2007) Remote sensing of particle depletion by coastal suspension-feeders. Can J Fish Aquat Sci 64:387–390

    Article  Google Scholar 

  • Grant J, Bacher C, Cranford PJ, Guyondet T, Carreau M (2008) A spatially explicit ecosystem model of seston depletion in dense mussel culture. J Mar Syst 73:155–168

    Article  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hartstein ND, Rowden AA (2004) Effect of biodeposits from mussel culture on macroinvertebrate assemblages at sites of different hydrodynamic regime. Mar Environ Res 57:339–357

    Article  CAS  Google Scholar 

  • Heilskov AC, Holmer M (2001) Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. ICES J Mar Sci 58:427–434

    Article  CAS  Google Scholar 

  • Holmer M, Hansen PK, Krakassis I, Borg JA, Schembri PJ (2008) Monitoring of environmental impacts of marine aquaculture. In: Holmer M, Black K, Duarte CM, Marba N, Karakassis I (eds) Aquaculture in the ecosystem. Springer, Berlin, pp 47–85

    Chapter  Google Scholar 

  • Hughes AD, Black KD (2016) Going beyond the search for solutions: understanding trade-offs in European integrated multi-trophic aquaculture development. Aquac Environ Interact 8:191–199

    Article  Google Scholar 

  • Hughes DJ, Cook EJ, Sayer MDJ (2005) Biofiltration and biofouling on artificial structures in Europe: the potential for mitigating organic impacts. Oceanogr Mar Biol Annu Rev 43:123–172

    Google Scholar 

  • Hughes AD, Black KD, Campbell I, Davidson K, Kelly MS, Stanley MS (2012) Does seaweed offer a solution for bioenergy with biological carbon capture and storage? Greenhouse Gases Sci Technol 2:402–407

    Article  CAS  Google Scholar 

  • Inglis GJ, Gust N (2003) Potential indirect effects of shellfish culture on the reproductive success of benthic predators. J Appl Ecol 40:1077–1089

    Article  Google Scholar 

  • Jackson D, Drumm A, McEvoy S, Jensen Ø, Mendiola D, Gabiña G, Borg JA, Papageorgiou N, Karakassis Y, Black KD (2015) A pan-European valuation of the extent, causes and cost of escape events from sea cage fish farming. Aquaculture 436:21–26

    Article  Google Scholar 

  • Jansen HM, Handa A, Cranford P, Bannister R, Bergvik M, Broch OJ, Forbord S, Husa V, Olsen Y, Reitan KI, Skjermo J, Strand O (2015) Exploitation of nutrients from salmon aquaculture: what is the potential for IMTA in Norway. J Shellfish Res 34:644–644

    Google Scholar 

  • Jefferson TA, Curry BE (1996) Acoustic methods of reducing or eliminating marine mammal-fishery interactions: do they work? Ocean Coast Manage 31:41–70

    Article  Google Scholar 

  • Jiang WM, Gibbs MT (2005) Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model. Aquaculture 244:171–185

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2006) Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES J Mar Sci 63:1162–1181

    Article  Google Scholar 

  • Kaiser MJ, Laing I, Utting SD, Burnell GM (1998) Environmental impacts of bivalve mariculture. J Shellfish Res 17:59–66

    Google Scholar 

  • Kapetsky JM, Aguilar-Manjarrez J, Jenness J (2013) A global assessment of potential for offshore mariculture development from a spatial perspective. FAO fisheries and aquaculture technical paper. no. 549. FAO, Rome, 181p. http://www.fao.org/docrep/017/i3100e/i3100e00.htm

  • Keeley N, Forrest B, Hopkins G, Gillespie P, Clement D, Webb S, Knight B, Gardner JPA (2009) Sustainable aquaculture in New Zealand: review of the ecological effects of farming shellfish and other non-finfish species. Ministry of Fisheries, Cawthron report no. 1476, 150p plus appendices

    Google Scholar 

  • Kirk M, Esler D, Boyd WS (2007) Morphology and density of mussels on natural and aquaculture structure habitats: implications for sea duck predators. Mar Ecol Prog Ser 346:179–187

    Article  Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46

    Article  Google Scholar 

  • Lacroix D, Pioch S (2011) The multi-use in wind farm projects: more conflicts or a win-win opportunity? Aquat Living Resour 24:129–135

    Article  Google Scholar 

  • Lees F, Baillie M, Gettinby G, Revie CW (2008) The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonison farmed Atlantic Salmon (Salmo salar. L) in Scotland, 2002–2006. PLoS One 3:e1549

    Article  Google Scholar 

  • Lejzerowicz F, Esling P, Pillet L, Wilding TA, Black KD, Pawlowski J (2015) High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci Rep 5:13932

    Google Scholar 

  • Lepper P, Turner V, Goodson A, Black K (2004) Source levels and spectra emitted by three commercial aquaculture anti-predation devices. In: Proceedings of seventh European conference on underwater acoustics, ECUA

    Google Scholar 

  • Liu Y, Bjelland HV (2014) Estimating costs of sea lice control strategy in Norway. Prev Vet Med 117:469–477

    Article  Google Scholar 

  • Matsuyama Y, Shumway S (2009) Impacts of harmful algal blooms on shellfisheries aquaculture. In: Allan, Burnell (eds). New technologies in aquaculture: improving production efficiency, quality and environmental management, Shellfish Aquaculture, Woodhead Publishing, pp 580–609, doi:10.1533/9781845696474.3.580

  • Michalek K, Ventura A, Sanders T (2016) Mytilus hybridisation and impact on aquaculture: a minireview. Mar Genomics 27:3–7

    Article  CAS  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Morton AB, Symonds HK (2002) Displacement of Orcinus orca (L.) by high amplitude sound in British Columbia, Canada. ICES J Mar Sci 59:71–80

    Article  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106:15103–15110

    Article  CAS  Google Scholar 

  • Nelson ML, Gilbert JR, Boyle KJ (2006) The influence of siting and deterrence methods on seal predation at Atlantic salmon (Salmo salar) farms in Maine, 2001–2003. Can J Fish Aquat Sci 63:1710–1721

    Article  Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Northridge S, Cargill A, Coram A, Mandleberg L, Calderan S, Reid B (2010) Entanglement of minke whales in Scottish waters; an investigation into occurrence, causes and mitigation. Final report to Scottish Government CR/2007/49. http://www.smru.st-and.ac.uk/documents/347.pdf

  • Northridge S, Coram A, Gordon J (2013) Investigations on seal depredation at Scottish fish farms. Scottish Government, Edinburgh. http://www.smru.st-and.ac.uk/documents/1758.pdf

    Google Scholar 

  • Olesiuk PF, Nichol LM, Sowden MJ, Ford JKB (2002) Effect of the sound generated by an acoustic harassment device on the relative abundance and distribution of harbor porpoises (Phocoena phocoena) in retreat passage, British Columbia. Mar Mamm Sci 18:843–862

    Article  Google Scholar 

  • Ounanian K, Delaney A, Raakjaer J, Ramirez-Monsalve P (2012) On unequal footing: stakeholder perspectives on the marine strategy framework directive as a mechanism of the ecosystem-based approach to marine management. Mar Pol 36:658–666

    Article  Google Scholar 

  • Pawlowski J, Esling P, Lejzerowicz F, Cordier T, Visco JA, Martins CIM, Kvalvik A, StavenK, Cedhagen T (2016) Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding. Aquac Environ Interact 8:371–386.

    Google Scholar 

  • Pearson TH, Black K (2001) Environmental impacts of aquaculture. In: Black K (ed) Environmental impacts of aquaculture. Sheffield Academic Press, Sheffield, pp 1–31

    Google Scholar 

  • Pearson T, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–311

    Google Scholar 

  • Pearson TH, Stanley SO (1979) Comparative measurement of the redox potential of marine sediments as a rapid means of assessing the effect of organic pollution. Mar Biol 53:371–379

    Article  Google Scholar 

  • Pelletier N, Tyedmers P (2007) Feeding farmed salmon: is organic better? Aquaculture 272:399–416

    Article  Google Scholar 

  • Piroddi C, Bearzi G, Christensen V (2011) Marine open cage aquaculture in the eastern Mediterranean Sea: a new trophic resource for bottlenose dolphins. Mar Ecol Prog Ser 440:255–U277

    Article  Google Scholar 

  • Plew DR, Stevens CL, Spigel RH, Hartstein ND (2005) Hydrodynamic implications of large offshore mussel farms. IEEE J Ocean Eng 30:95–108

    Article  Google Scholar 

  • Pohle G, Frost B, Findlay R (2001) Assessment of regional benthic impact of salmon mariculture within the Letang Inlet, Bay of Fundy. ICES J Mar Sci 58:417–426

    Article  Google Scholar 

  • Reid GK, Liutkus M, Robinson SMC, Chopin TR, Blair T, Lander T, Mullen J, Page F, Moccia RD (2009) A review of the biophysical properties of salmonid faeces: implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture. Aquac Res 40:257–273

    Article  Google Scholar 

  • Ross BP, Lien J, Furness RW (2001) Use of underwater playback to reduce the impact of eiders on mussel farms. ICES J Mar Sci 58:517–524

    Article  Google Scholar 

  • Schakner ZA, Blumstein DT (2013) Behavioral biology of marine mammal deterrents: a review and prospectus. Biol Conserv 167:380–389

    Article  Google Scholar 

  • Schulz HD (2000) Redox measurements in marine sediments. In: Schüring J, Schulz HD, Fischer WR, Böttcher J, Duijnisveld WHM (eds) Redox: fundamentals, processes and applications. Springer, Berlin, Heidelberg, pp 235–246

    Chapter  Google Scholar 

  • Sepulveda M, Oliva D (2005) Interactions between South American sea lions Otaria flavescens (Shaw) and salmon farms in southern Chile. Aquac Res 36:1062–1068

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  Google Scholar 

  • SSPO (2015) Code of good practice – seawater lochs. SSPO. http://thecodeofgoodpractice.co.uk/chapters/chapter-4-seawater-lochs/. Accessed July 2016

  • Stadmark J, Conley DJ (2011) Mussel farming as a nutrient reduction measure in the Baltic Sea: consideration of nutrient biogeochemical cycles. Mar Pollut Bull 62:1385–1388

    Article  CAS  Google Scholar 

  • Tett P (2008) Fish farm wastes in the ecosystem. In: Holmer M, Black K, Duarte CM, Marba N, Karakassis I (eds) Aquaculture in the ecosystem. Springer, Berlin, pp 1–46

    Google Scholar 

  • Tett P, Portilla E, Gillibrand PA, Inall M (2011) Carrying capacity and assimilative capacities: the ACExR-LESV model for sea loch aquaculture. Aquac Res 42:51–67

    Article  Google Scholar 

  • Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, Horsberg TE, Jackson D (2013) Salmon lice – impact on wild salmonids and salmon aquaculture. J Fish Dis 36:171–194

    Article  CAS  Google Scholar 

  • Treasurer J (2013) Use of wrasse in sea lice control. Report commissioned by SARF. ISBN: 978-1-907266-56-0. http://www.sarf.org.uk/projects/

  • Treasurer J, Feledi T (2014) The physical condition and welfare of five species of wild-caught wrasse stocked under aquaculture conditions and when stocked in Atlantic Salmon, Salmo salar, production cages. J World Aquacult Soc 45:213–219

    Article  Google Scholar 

  • Treasurer JW, Wadsworth S, Grant A (2000) Resistance of sea lice, Lepeophtheirus salmonis (Krøyer), to hydrogen peroxide on farmed Atlantic salmon, Salmo salar L. Aquac Res 31:855–860

    Article  Google Scholar 

  • Waddy SL, Merritt VA, Hamilton-Gibson MN, Aiken DE (2010) Effect of emamectin benzoate on the molt cycle of ovigerous American lobsters Homarus americanus is influenced by the dosing regimen. Aquat Biol 11:47–52

    Article  Google Scholar 

  • Wang X, Olsen LM, Reitan KI, Olsen Y (2012) Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquac Environ Interact 2:267–283

    Article  Google Scholar 

  • Wang XX, Broch OJ, Forbord S, Handa A, Skjermo J, Reitan KI, Vadstein O, Olsen Y (2014) Assimilation of inorganic nutrients from salmon (Salmo salar) farming by the macroalgae (Saccharina latissima) in an exposed coastal environment: implications for integrated multi-trophic aquaculture. J Appl Phycol 26:1869–1878

    Article  CAS  Google Scholar 

  • Wilding TA (2012) Changes in sedimentary redox associated with mussel (Mytilus edulis L.) farms on the west-coast of Scotland. PLoS One 7(9):e45159

    Article  CAS  Google Scholar 

  • Wilding TA, Nickell TD (2013) Changes in benthos associated with mussel (Mytilus edulis L.) farms on the west-coast of Scotland. PLoS One 8:e68313

    Article  CAS  Google Scholar 

  • Wilding TA, Cromey CJ, Nickell TD, Hughes DJ (2012) Salmon farm impacts on muddy-sediment megabenthic assemblages on the west coast of Scotland. Aquac Environ Interact 2:145–156

    Article  Google Scholar 

  • Willis KJ, Gillibrand PA, Cromey CJ, Black KD (2005) Sea lice treatments on salmon farms have no adverse effects on zooplankton communities: a case study. Mar Pollut Bull 50:806–816

    Article  CAS  Google Scholar 

  • Wu RSS (1995) The environmental impact of marine fish culture: towards a sustainable future. Mar Pollut Bull 31:159–166

    Article  CAS  Google Scholar 

  • Xiang J-H (2007) Mariculture-related environmental concerns in the People’s Republic of China. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, Netherlands, pp 219–228

    Chapter  Google Scholar 

  • Young MO (2015) Marine animal entanglements in mussel aquaculture gear. Masters thesis, University of Akureyri, University Centre of the Westfjords, Iceland. http://skemman.is/stream/get/1946/22522/50582/1/CMMthesis_final_Madeline_Young.pdf

  • Žydelis R, Esler D, Kirk M, Sean Boyd W (2009) Effects of off-bottom shellfish aquaculture on winter habitat use by molluscivorous sea ducks. Aquat Conserv Mar Freshwat Ecosyst 19:34–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Wilding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wilding, T.A., Black, K.D., Benjamins, S., Campbell, I. (2018). Mariculture. In: Salomon, M., Markus, T. (eds) Handbook on Marine Environment Protection . Springer, Cham. https://doi.org/10.1007/978-3-319-60156-4_5

Download citation

Publish with us

Policies and ethics