Skip to main content

Some Remarks on “A Contribution to Electrodynamics” by Bernhard Riemann

  • Chapter
  • First Online:
From Riemann to Differential Geometry and Relativity

Abstract

Around 1850, the idea originated that electromagnetic forces between moving charges in circuits are propagated with the velocity of light. After such a speculation by C. F. Gauss in 1845, B. Riemann, in 1858, suggested the inhomogeneous wave equation in 3-dimensional space for the modeling of this propagation. He found a particular solution replacing Coulomb’s potential, now called the retarded potential. His attempt failed to derive from this solution Weber’s action-at-a-distance potential. Riemann withdrew his pertinent paper before it became printed. After a description of some aspects of research by Gauss, Weber and Riemann, a likely reason for Riemann’s withdrawal is specified differing from recent suggestions by historians of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The translation is taken from [23], p. 368. If not indicated otherwise, translations are made by myself.

  2. 2.

    In today’s view, he used \(\rho = f \delta (r)\), where \( \delta \) is Dirac’s distribution; cf. Appendix 1.

  3. 3.

    We do not dwell here on Riemann’s ideas about the nature of the medium through which the electrical forces are propagated. Cf. [20], p. 529, 532, 534 with the pagination after the 2nd edition of Riemann’s collected papers of (1892).

  4. 4.

    Even before R. Clausius, H. Grassmann had suggested the same potential as Clausius [11], ([19], III, 203–210).

  5. 5.

    Instead of by expression (8), Weber’s force also is given in the form resulting from the substitution \(c \rightarrow \sqrt{2} c \). In Weber’s original paper [37] the coefficient of \(\dot{r}^2 \) had been \(\frac{a^2}{16}\). This was changed later into \(c^2\) by Weber, but his c corresponds to \((\sqrt{2})^{-1} \times \)velocity of light.

  6. 6.

    Translated into German by H. Helmholtz and G. Wertheim [14].

  7. 7.

    A comparison between Maxwell’s and Weber’s electrodynamics is presented in [5].

  8. 8.

    In fact, in the notes by Eduard Sellin, Riemann’s second course of summer 1858 on Selected physical problems is also mixed in.

  9. 9.

    For the motion of the electrical particles I assume that for each part of the conductor the sum of the fundamental actions exerted by the particles with positive and negative electricity is still almost the same during a span of time in which a very large flow passes through. It is known that this assumption is justified as well by experience as by inspection of the electro-motoric forces ([29], Blatt 10).

  10. 10.

    By the same approach, Riemann’s potential could be derived as well. Thus Riemann had achieved what Gauss had had in mind, i.e., “the derivation of the additional forces [..] from the action”.

  11. 11.

    As mentioned above, he first presented his potential in one of his two summer courses of 1858.

References

  1. T. Archibald, Physics as a constraint on mathematical research: the case of potential theory and electrodynamics, in The History of Modern Mathematics II: Institutions and Applications, ed. by D. E. Rowe, J. McCleary, (Academic Press, Boston, MA 1989), pp. 29–75

    Google Scholar 

  2. A. K. T. Assis, On the first electromagnetic measurement of the velocity of light by Wilhelm Weber and Rudolf Kohlrausch, in Volta and the History of Electricity, ed. by F. Bevilacqua, E. A. Giannetto, (Ulrico Hoepli, Milano 2003), pp. 267–286

    Google Scholar 

  3. A.K.T. Assis, Weber’s Electrodynamics (Kluwer Academic Publishers, Dordrecht, 1994)

    Google Scholar 

  4. A.K.T. Assis, On the propagation of electromagnetic signals in wires and coaxial cables according to Weber’s electrodynamics. Found. Phys. 30, 1107–1121 (2000)

    Article  Google Scholar 

  5. A.K.T. Assis, H. Torres, Silva, Comparison between Weber’s electrodynamics and classical electrodynamics. Pramana. J. Phys. 55(3), 393–404 (2000)

    Google Scholar 

  6. J. Clerc, Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 166, 459–512 (1865)

    Google Scholar 

  7. O. Darrigol, Electrodynamics from Ampère to Einstein (University Press, Oxford, 2000)

    Google Scholar 

  8. D. Eberle Spencer and S.Y. Uma, Gauss and the electrodynamic force, in The mathematical Heritage of C. F. Gauss, Ed. George M. Rassias, 685–711, (World Scientific, Singapore, 1991)

    Google Scholar 

  9. C.F. Gauss, Gesammelte Werke, vol. 5, edited by the Royal Society of Göttingen. Dieterich, Göttingen (1876)

    Google Scholar 

  10. H. Goenner, Spezielle Relativitätstheorie und die klassische Feldtheorie (Elsevier Spektrum Akademischer Verlag, Heidelberg, 2004)

    Google Scholar 

  11. H. Grassmann, Zur Elektrodynamik, Crelles J. 64, 57–64 (1845)

    Google Scholar 

  12. K. Hattendorff, Schwere, Elektrizität und Magnetismus nach den Vorlesungen von Bernhard Riemann bearbeitet von Karl Hattendorff (Carl Rümpler, Hannover, 1876)

    Google Scholar 

  13. H. Helmholtz, Über die Erhaltung der Kraft. Nachdruck der Veröffentlichung von 1847 als Oswald’s Klassiker der exakten Wissenschaften, (Nr. 1, Engelmann, Leipzig 1889)

    Google Scholar 

  14. H. Helmholtz, G. Wertheim, Handbuch der Theoretischen Physik (Vieweg, Braunschweig, 1874)

    Google Scholar 

  15. C. Jungnickel and R. McCormmach, Intellectual Mastery of Nature. Vol. 1: The torch of mathematics, (University of Chicago Press, 1986)

    Google Scholar 

  16. G. Kirchhoff, On the motion of electricity in wires. Philoso. Mag. 13, 393–412 (1857)

    Google Scholar 

  17. D. Laugwitz, Bernhard Riemann 1826–1866 (Birkhäuser, Basel/Boston/Berlin, 1996)

    Google Scholar 

  18. L. Lorenz, Ueber die Identität der Schwingungen des Lichts mit den elektrischen Strömen, (Poggendorff’s) Annalen der Physik 131 (1867), 243–263. Danish original in Oversigt over det K. Danske Vidensk. Selsk. Forhandl. 1867, Nr. 1

    Google Scholar 

  19. J. Lüroth and F. Engel eds., Hermann Grassmann. Gesammelte mathematische und physikalische Werke Zweiten Bandes zweiter Theil: Die Abhandlungen zur Mechanik und zur Mathematischen Physik, B. G. Teubner, Leipzig (1902)

    Google Scholar 

  20. R. Narasimhan (ed.), B. Riemann: Gesammelte Mathematische Werke, wissenschaftlicher Nachlass und Nachträge, (Springer, Berlin; Teubner, Leipzig 1990)

    Google Scholar 

  21. F. Neumann, Die mathematischen Gesetze der inducirten elektrischen Ströme, Abhandlungen der Preussischen Akademie, 1–87, Allgemeine Gesetze der inducirten elektrischen Ströme. Annalen der Physik 67, 31–44 (1846)

    Google Scholar 

  22. A. O’Rahilly, Electromagnetics (Green & Co (London & Cork; University Press, Cork, A Discussion of Fundamentals, Longmans, 1938)

    Google Scholar 

  23. B. Riemann, A contribution to electrodynamics, Philosophical Magazine 34. Series 4, 368–372 (1867)

    Google Scholar 

  24. B. Riemann, Ein Beitrag zur Elektrodynamik, (Poggendorff’s). Annalen der Physik 131(6), 289–293 (1867)

    Google Scholar 

  25. B. Riemann, Ein Beitrag zur Elektrodynamik. Handschriftenabteilung der Staats- und Universitätsbibliothek Göttingen. Riemann papers. Cod. Ms. B. Riemann 24, BI. 1–7 (1858)

    Google Scholar 

  26. B. Riemann, Letter to Ida Riemann, quoted from curriculum vitae by R. Dedekind in 2nd edition of Riemann’s Gesammelte Mathematische Werke, 2. Aufl. 1892. According to [1], this letter is in the Archive of Stiftung Preussischer Kulturbesitz, Berlin, Nachlass Riemann Acc. 17

    Google Scholar 

  27. B. Riemann, Letter to Wilhelm Riemann 28. 12. 1853, quoted from curriculum vitae by R. Dedekind in 2nd edition of Riemann’s Gesammelte Mathematische Werke, 2. Aufl. 1892

    Google Scholar 

  28. B. Riemann, Partielle Differentialgleichungen und deren Anwendungen auf physikalische Fragen. Vorlesungen. Herausgegeben von Karl Hattendorff. Braunschweig: Vieweg 1869 (1969). Available in the internet, http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN234595299&IDDOC=46562

  29. B. Riemann, N. Riemann. Handschriftenabteilung der Staats- und Universitätsbibliothek Göttingen. Riemann papers. Cod. Ms. B. Riemann 24 1858

    Google Scholar 

  30. F. Schatz, Über das Grundgesetz der Elektrodynamik, Inaugural-Dissertation der phil. Fak. d. Rhein Friedrich-Wilhelms Universität zu Bonn vom 17. 3. 1880. Staats- und Universitätsbibliothek, Göttingen

    Google Scholar 

  31. E. Schering, Zum Gedächtnis an B. Riemann in Gesammelte Mathematische Werke, ed. By R. Haussner, Karl Schering. (Mayer und Müller, Berlin, 1909)

    Google Scholar 

  32. E. Schultze, B. Riemann “Schwere, Elektricität und Magnetismus.” Mitschrift der Vorlesung von 1861, 220 Seiten, Nachlass Schwarz, Nr. 677. Akademie der Wissenschaften der DDR, Berlin. Digitalized by the University of Göttingen: http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN631015833&LOGID=LOG_0002

  33. E. Sellien, Notes on Riemann’s courses “The mathematical theory of electricity and magnetism” and “Selected physical problems” of summer 1858. Nachlass Riemann. Handschriftenabteilung der Staats- und Universitätsbibliothek Göttingen. Riemann papers. Cod. Ms. B. Riemann 45, Blatt 1–23 1858

    Google Scholar 

  34. W. Thomson, P. G. Tait, Treatise on Natural Philosophy (University Press, Cambridge, 1867)

    Google Scholar 

  35. W. Weber, Elektrodynamische Maassbestimmungen (Poggendorffs). Annalen der Physik 73, 193–240 (1848)

    Google Scholar 

  36. W. Weber, Elektrodynamische Maassbestimmungen insbesondere über elektrische Schwingungen. Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, mathematisch-physische Klasse 6, 571–716 (1864)

    Google Scholar 

  37. W. Weber, Elektrodynamische Maassbestimmungen, Abhandlungen bei Begründung der Königlich Sächsischen Gesellschaft der Wissenschaften am Tage der zweihundertjährigen Geburtsfeier Leibnizens (Herausgegeben von der Fürstlich Jablonowskischen Gesellschaft. Weidmann, Leipzig, 1846)

    Google Scholar 

  38. E. Wiechert, Elektrodynamische Elementargesetze, Archives Néerlandaises des Sciences Exactes et Naturelles Serie 2(5), 549–573 (1900)

    Google Scholar 

Download references

Acknowledgements

For the invitation to contribute to this volume and for his helpful remarks I am grateful to A. Papadopoulos, Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Goenner .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Electric field \(\overset{\rightarrow }{E}\) and magnetic field \(\overset{\rightarrow }{B}\) are combined in the the field tensor of the electromagnetic field \(F = F_{ik} dx^i\wedge dx^k~ (i, k = 0, 1,2,3)~ ,\) which can be expressed by the 4-potential \(A = A_i dx^i\) as \(F= dA~ \) with (in components) \(A_{i}\simeq (\phi ,-\overset{\rightarrow }{A})\) where \(\phi \) is the scalar, \(\overset{\rightarrow }{A}\) the vector potential. Thus, \(F_{ik}= \partial _{i} A_k -\partial _{k} A_i~ , \) with \( F_{0k}\simeq \overset{\rightarrow }{E}= -\overset{\rightarrow }{\nabla }{\phi }-\frac{1}{c}\frac{\partial \overset{\rightarrow }{A}}{\partial t}~, F_{\mu \nu }~ (\mu , \nu = 1, 2, 3) \rightarrow \overset{\rightarrow }{B} = \overset{\rightarrow }{\nabla }\times \overset{\rightarrow }{A}~ \). From the first of Maxwell’s equations :

$$\begin{aligned} \partial _{l}F^{il}= \frac{4\pi }{c}j^{i}~~, ~~\partial _{l} F^{* il}= 0 \end{aligned}$$
(20)

with \(F^{ik} = \eta ^{ir} \eta ^{ks} F_{rs} ~, ~F^{* ik}= \frac{1}{2}\epsilon ^{iklm} F_{lm}~, \) the Minkowski metric \(\eta _{ik}\), and the 4-current \(J^i \simeq ( c\rho , \overset{\rightarrow }{j})\), we obtain:

$$\begin{aligned} \partial ^{i} \partial _{l}A^{i} - \partial _{l} \partial ^{l}A^{i} = \frac{4\pi }{c}j^{i} ~. \end{aligned}$$
(21)

As the vector potential is determined only up to gauge transformations \(A \rightarrow A' = A + d\lambda \) with a scalar function \(\lambda \), a so-called gauge condition may be added. Taking the Lorenz gauge \( \partial _{l}A^{l}=0\), from (2) the inhomogeneous wave equation follows:

$$\begin{aligned} \square A^{i} = -\frac{4\pi }{c}j^{i} \end{aligned}$$
(22)

with \(\square = \partial _s \partial ^s= \eta ^{rs}\partial _r \partial _s\). The Lorentz gauge condition then leads to \(\partial _sj^{s}= 0\), i.e., to the equation for the conservation of electrical charge. For the scalar potential, then

$$\begin{aligned} \square \phi =\frac{1}{c^2}\frac{\partial ^2 \phi }{\partial t ^2} - \overset{\rightarrow }{\nabla }\cdot \overset{\rightarrow }{\nabla } \phi = -4\pi \rho ~. \end{aligned}$$
(23)

For a static electric field, Poisson’s equation follows with the Coulomb potential

$$\begin{aligned} \phi (x) = \frac{1}{4\pi } \int d^3x' \frac{\rho (x')}{|\overset{\rightarrow }{x}-{\overset{\rightarrow }{x'}}|}~. \end{aligned}$$
(24)

The retarded potential is a particular solution of (23):

$$\begin{aligned} \phi (x) = \frac{1}{4\pi } \int d^3x' \frac{\rho (x', t- \frac{|\overset{\rightarrow }{x}-\overset{\rightarrow }{x'}|}{c})}{|\overset{\rightarrow }{x}-{\overset{\rightarrow }{x'}|}}~ \end{aligned}$$
(25)

vanishing at spacelike infinity. It replaces Coulomb’s potential for an arbitrarily time-dependent charge distribution.

Retarded and advanced solutions are combined in:

$$\begin{aligned} A^{i} =\frac{2}{c} \int d^{4}x' \theta (x'-x)\delta [(x^{s}-x'^{s})(x_{s}-x'_{s})] j^{i} \end{aligned}$$
(26)

with Dirac’s \(\delta \)-distribution and the characteristic function \( \theta (x'-x)= 0, +1\) or \(0, -1\) selecting directions into the future and past lightcone [10]. With the expression for the electrical current

$$\begin{aligned} j^{i}= c e \int _{-\infty }^{+\infty } ds~ u^{i} \delta ^4 (x-x')~, \end{aligned}$$
(27)

where \(u^{i}\simeq \gamma (c, \overset{\rightarrow }{v}) \), \(\gamma = (1-\frac{v^2}{c^2})^{-\frac{1}{2}}\), and e the electrical charge of a point particle, then the so-called Liénard-Wiechert potential results:

$$\begin{aligned} \phi = \frac{e}{|\overset{\rightarrow }{x}-{\overset{\rightarrow }{x'}}|} (1- \frac{1}{c}\overset{\rightarrow }{n}\cdot \overset{\rightarrow }{v})^{-1}~, ~\overset{\rightarrow }{A}= \frac{e \overset{\rightarrow }{v}}{|\overset{\rightarrow }{x}-{\overset{\rightarrow }{x'}}|} (1- \frac{1}{c}\overset{\rightarrow }{n}\cdot \overset{\rightarrow }{v} )^{-1}~, \end{aligned}$$
(28)

with \(\overset{\rightarrow }{v}, {\overset{\rightarrow }{x'}}\) taken at the retarded time; \(\overset{\rightarrow }{n}= ({\overset{\rightarrow }{x}-\overset{\rightarrow }{x'}}) (|{\overset{\rightarrow }{x}-\overset{\rightarrow }{x'}}|)^{-1}\).

(28) is different from Riemann’s Ansatz (16) criticized by Wiechert; cf. (17) in Sect. 4.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Goenner, H. (2017). Some Remarks on “A Contribution to Electrodynamics” by Bernhard Riemann. In: Ji, L., Papadopoulos, A., Yamada, S. (eds) From Riemann to Differential Geometry and Relativity. Springer, Cham. https://doi.org/10.1007/978-3-319-60039-0_3

Download citation

Publish with us

Policies and ethics