Skip to main content

Proteomic Biomarkers for Endometriosis

  • Chapter
  • First Online:
Biomarkers for Endometriosis

Abstract

Endometriosis is a benign, estrogen-dependent gynecology disorder associated with pelvic pain and infertility. It is characterized by the presence of endometrial-like tissue outside the uterine cavity, mainly on the pelvic peritoneum and ovaries and in the rectovaginal septum and more rarely in the pericardium, the pleura, and even the brain. The etiology and pathogenesis remains unclear. The most accepted theory is Sampson’s theory: retrograde menstruation. The gold standard of diagnosing endometriosis is through laparoscopy.

Proteomics research has found differentially expressed protein/peptides; however, till today we have not found a non- or semi-invasive test for endometriosis. To date, two most commonly applied technologies used in endometriosis research are surfaced-enhanced laser desorption ionization (SELDI)-time-of-flight (TOF) mass spectrometry (MS) and two-dimensional difference gel electrophoresis (2D DIGE). In this chapter we will discuss the proteomics technologies available and their advantages and disadvantages and critically describe the biomarker proteomics results in endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D DIGE:

Two-dimensional difference gel electrophoresis

FTMS:

Fourier transform mass spectrometry

HPLC:

High-performance liquid chromatography

ICAT:

Isotope-coded affinity tags

ICPL:

Isotope-coded protein labeling

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption ionization

MS:

Mass spectrometry

MudPIT:

Multidimensional Protein Identification Technology

SCX:

Strong cation exchanger

SELDI:

Surface-enhanced laser desorption ionization

SILAC:

Stable isotope labeling by amino acids in cell culture

TOF:

Time of flight

References

  1. Smolka MB, Zhou H, Purkayastha S, Aebersold R. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal Biochem. 2001;297(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  2. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–9.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang R, Sioma CS, Wang S, Regnier FE. Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem. 2001;73(21):5142–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics. 2003;2(5):299–314.

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics. 2003;2(11):1198–204.

    Article  CAS  PubMed  Google Scholar 

  6. Lottspeich F, Kellermann J. ICPL labeling strategies for proteome research. Methods Mol Biol. 2011;753:55–64.

    Article  CAS  PubMed  Google Scholar 

  7. Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A. 1999;96(12):6591–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  CAS  PubMed  Google Scholar 

  9. de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol. 2006;7(6):R50.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol. 2003;21(3):315–8.

    Article  CAS  PubMed  Google Scholar 

  11. Blagoev B, Mann M. Quantitative proteomics to study mitogen-activated protein kinases. Methods. 2006;40(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  12. Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON. Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics. 2005;4(11):1697–709.

    Article  CAS  PubMed  Google Scholar 

  13. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–904.

    Article  CAS  PubMed  Google Scholar 

  15. Hardt M, Witkowska HE, Webb S, Thomas LR, Dixon SE, Hall SC, et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal Chem. 2005;77(15):4947–54.

    Article  CAS  PubMed  Google Scholar 

  16. Dayon L, Pasquarello C, Hoogland C, Sanchez JC, Scherl A. Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteome. 2010;73(4):769–77.

    Article  CAS  Google Scholar 

  17. Stewart II, Thomson T, Figeys D. 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom. 2001;15(24):2456–65.

    Article  CAS  PubMed  Google Scholar 

  18. Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem. 2001;73(23):5683–90.

    Article  CAS  PubMed  Google Scholar 

  19. Siva AB, Srivastava P, Shivaji S. Understanding the pathogenesis of endometriosis through proteomics: recent advances and future prospects. Proteomics Clin Appl. 2014;8(1–2):86–98.

    CAS  PubMed  Google Scholar 

  20. Siristatidis CS. What have the 'omics done for endometriosis? Med Sci Monit. 2009;15(5):RA116–23.

    PubMed  Google Scholar 

  21. May KE, Villar J, Kirtley S, Kennedy SH, Becker CM. Endometrial alterations in endometriosis: a systematic review of putative biomarkers. Hum Reprod Update. 2011;17(5):637–53.

    Article  CAS  PubMed  Google Scholar 

  22. May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update. 2010;00(0):1–24.

    CAS  Google Scholar 

  23. Fassbender A, Verbeeck N, Bornigen D, Kyama CM, Bokor A, Vodolazkaia A, et al. Combined mRNA microarray and proteomic analysis of eutopic endometrium of women with and without endometriosis. Hum Reprod. 2012;27(7):2020–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Zheng W, Ding XY, JK Y, Jiang WZ, Zhang SZ. Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting. Fertil Steril. 2010;93(7):2460–2.

    Article  CAS  PubMed  Google Scholar 

  25. Kyama CM, T'Jampens D, Mihalyi A, Simsa P, Debrock S, Waelkens E, et al. Protein Chip technology is a useful method in the pathogenesis and diagnosis of endometriosis: a preliminary study. Fertil Steril. 2006;86(1):203–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fassbender A, Simsa P, Kyama CM, Waelkens E, Mihalyi A, Meuleman C, et al. TRIzol treatment of secretory phase endometrium allows combined proteomic and mRNA microarray analysis of the same sample in women with and without endometriosis. Reprod Biol Endocrinol. 2010;8:123.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ding X, Wang L, Ren Y, Zheng W. Detection of mitochondrial biomarkers in eutopic endometria of endometriosis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Fertil Steril. 2010;94(7):2528–30.

    Article  CAS  PubMed  Google Scholar 

  28. Kyama CM, Mihalyi A, Gevaert O, Waelkens E, Simsa P, Van de Plas R, et al. Evaluation of endometrial biomarkers for semi-invasive diagnosis of endometriosis. Fertil Steril. 2011;95(4):1338–43.

    Article  CAS  PubMed  Google Scholar 

  29. Fassbender A, Vodolazkaia A, Saunders P, Lebovic D, Waelkens E, De Moor B, et al. Biomarkers of endometriosis. Fertil Steril. 2013;99(4):1135–45.

    Article  CAS  PubMed  Google Scholar 

  30. Fassbender A, Waelkens E, Verbeeck N, Kyama CM, Bokor A, Vodolazkaia A, et al. Proteomics analysis of plasma for early diagnosis of endometriosis. Obstet Gynecol. 2012;119(2 Pt 1):276–85.

    Article  CAS  PubMed  Google Scholar 

  31. Jing J, Qiao Y, Suginami H, Taniguchi F, Shi H, Wang X. Two novel serum biomarkers for endometriosis screened by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and their change after laparoscopic removal of endometriosis. Fertil Steril. 2009;92(4):1221–7.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Feng J, Chang XH, Li ZX, XY W, Cui H. Effect of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on identifing biomarkers of endometriosis. Chin Med J. 2009;122(4):373–6.

    CAS  PubMed  Google Scholar 

  33. Seeber B, Sammel MD, Fan X, Gerton GL, Shaunik A, Chittams J, et al. Proteomic analysis of serum yields six candidate proteins that are differentially regulated in a subset of women with endometriosis. Fertil Steril. 2009;93(7):2137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu H, Lang J, Zhou Q, Shan D, Li Q. Detection of endometriosis with the use of plasma protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Fertil Steril. 2007;87(4):988–90.

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Zheng W, JK Y, Jiang WZ, Mu L, Zhang SZ. Artificial neural networks combined with surface-enhanced laser desorption/ionization mass spectra distinguish endometriosis from healthy population. Fertil Steril. 2007;88(6):1700–2.

    Article  PubMed  Google Scholar 

  36. Wolfler MM, Schwamborn K, Otten D, Hornung D, Liu H, Rath W. Mass spectrometry and serum pattern profiling for analyzing the individual risk for endometriosis: promising insights? Fertil Steril. 2009;91(6):2331–7.

    Article  PubMed  Google Scholar 

  37. Wang L, Zheng W, Mu L, Zhang SZ. Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks. Int J Gynecol Obstet. 2008;101(3):253–8.

    Article  CAS  Google Scholar 

  38. Zheng N, Pan C, Liu W. New serum biomarkers for detection of endometriosis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Int Med Res. 2011;39(4):1184–92.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Y, Liu YN, Li Y, Tian L, Ye X, Cui H, et al. Identification of biomarkers for endometriosis using clinical proteomics. Chin Med J. 2015;128(4):520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dutta M, Subramani E, Taunk K, Gajbhiye A, Seal S, Pendharkar N, et al. Investigation of serum proteome alterations in human endometriosis. J Proteome. 2015;114:182–96.

    Article  CAS  Google Scholar 

  41. Hwang JH, Lee KS, Joo JK, Wang T, Son JB, Park JH, et al. Identification of biomarkers for endometriosis in plasma from patients with endometriosis using a proteomics approach. Mol Med Rep. 2014;10(2):725–30.

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Liu HY, Shi HH, Lang JH, Sun W. Urine peptide patterns for non-invasive diagnosis of endometriosis: a preliminary prospective study. Eur J Obstet Gynecol Reprod Biol. 2014;177:23–8.

    Article  CAS  PubMed  Google Scholar 

  43. El-Kasti MM, Wright C, Fye HK, Roseman F, Kessler BM, Becker CM. Urinary peptide profiling identifies a panel of putative biomarkers for diagnosing and staging endometriosis. Fertil Steril. 2011;95(4):1261–6.

    Article  CAS  PubMed  Google Scholar 

  44. Gupta S, Ghulmiyyah J, Sharma R, Halabi J, Agarwal A. Power of proteomics in linking oxidative stress and female infertility. Biomed Res Int. 2014;2014:916212.

    PubMed  PubMed Central  Google Scholar 

  45. HM X, Deng HT, Liu CD, Chen YL, Zhang ZY. Phosphoproteomics analysis of endometrium in women with or without endometriosis. Chin Med J. 2015;128(19):2617–24.

    Article  Google Scholar 

  46. Xiaomeng X, Ming Z, Jiezhi M, Xiaoling F. Aberrant histone acetylation and methylation levels in woman with endometriosis. Arch Gynecol Obstet. 2013;287(3):487–94.

    Article  PubMed  Google Scholar 

  47. Meehan KL, Rainczuk A, Salamonsen L, Stephens A. Proteomics and the search for biomarkers of reproductive disease. Reproduction. 2010;140(4):505–19.

    Article  CAS  PubMed  Google Scholar 

  48. Fassbender A, Rahmioglu N, Vitonis AF, Vigano P, Giudice LC, D'Hooghe TM, et al. World endometriosis research foundation endometriosis Phenome and Biobanking harmonisation project: IV. Tissue collection, processing, and storage in endometriosis research. Fertil Steril. 2014;102(5):1244–53.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rahmioglu N, Fassbender A, Vitonis AF, Tworoger SS, Hummelshoj L, D'Hooghe TM, et al. World endometriosis research foundation endometriosis Phenome and Biobanking harmonization project: III. Fluid biospecimen collection, processing, and storage in endometriosis research. Fertil Steril. 2014;102(5):1233–43.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D’Hooghe M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fassbender, A., Hubert, A., Waelkens, E., O, D., D’Hooghe, T. (2017). Proteomic Biomarkers for Endometriosis. In: D'Hooghe, T. (eds) Biomarkers for Endometriosis. Springer, Cham. https://doi.org/10.1007/978-3-319-59856-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59856-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59854-3

  • Online ISBN: 978-3-319-59856-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics